語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Superhydrophobic Titania Nanotube Ar...
~
Colorado State University.
Superhydrophobic Titania Nanotube Arrays for Reducing Adhesion of Bacteria and Platelets.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Superhydrophobic Titania Nanotube Arrays for Reducing Adhesion of Bacteria and Platelets./
作者:
Bartlett, Kevin.
面頁冊數:
1 online resource (103 pages)
附註:
Source: Masters Abstracts International, Volume: 57-01.
Contained By:
Masters Abstracts International57-01(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355296792
Superhydrophobic Titania Nanotube Arrays for Reducing Adhesion of Bacteria and Platelets.
Bartlett, Kevin.
Superhydrophobic Titania Nanotube Arrays for Reducing Adhesion of Bacteria and Platelets.
- 1 online resource (103 pages)
Source: Masters Abstracts International, Volume: 57-01.
Thesis (M.S.)
Includes bibliographical references
Hemocompatibility and bacterial infections cause challenges for medical devices. When any material is implanted into the body bacteria, blood, proteins and platelets will adsorb and attach to its surface. The platelet adsorption leads to thrombosis and clot formation on the surfaces, restricting blood flow and in some cases leading to inflammation and device failure. Bacteria adhesion leads to colony formation and eventually infection if left untreated. Infections can be treated with antibiotics, but growing antibiotic resistance among bacteria has spurred a search for methods that reduce infections without increasing resistance. Proposed methods have included diamond-like carbon surfaces, drug-eluting surfaces, and titania nanotube arrays. These methods have all shown some initial improved, but no approach has proven durable over long periods of time. Superhemophobic surfaces are a new approach to improving performance of medical devices, but the interactions of blood components and bacteria with these surfaces have not been well-documented. In this work, superhemophobic surfaces were developed by modifying the surface topography and surface chemistry of titanium. The surface topography was modified by creating titania nanotube arrays through a well-documented anodization and chemical etching technique. Superhemophobicity was induced by modifying the titania nanotube arrays with different silanes using chemical vapor deposition. The investigations of blood interactions with superhemophobic surfaces showed reduced protein adsorption. The bacteria adhesion studies showed reduced attachment for both gram-positive and gram-negative bacteria. The results indicate these surfaces have potential for enhancing material hemocompatibility and reducing the attachment of bacteria.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355296792Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Superhydrophobic Titania Nanotube Arrays for Reducing Adhesion of Bacteria and Platelets.
LDR
:03074ntm a2200349Ki 4500
001
908721
005
20180330125241.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355296792
035
$a
(MiAaPQ)AAI10604136
035
$a
(MiAaPQ)colostate:14395
035
$a
AAI10604136
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Bartlett, Kevin.
$3
1178986
245
1 0
$a
Superhydrophobic Titania Nanotube Arrays for Reducing Adhesion of Bacteria and Platelets.
264
0
$c
2017
300
$a
1 online resource (103 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 57-01.
500
$a
Adviser: Ketul C. Popat.
502
$a
Thesis (M.S.)
$c
Colorado State University
$d
2017.
504
$a
Includes bibliographical references
520
$a
Hemocompatibility and bacterial infections cause challenges for medical devices. When any material is implanted into the body bacteria, blood, proteins and platelets will adsorb and attach to its surface. The platelet adsorption leads to thrombosis and clot formation on the surfaces, restricting blood flow and in some cases leading to inflammation and device failure. Bacteria adhesion leads to colony formation and eventually infection if left untreated. Infections can be treated with antibiotics, but growing antibiotic resistance among bacteria has spurred a search for methods that reduce infections without increasing resistance. Proposed methods have included diamond-like carbon surfaces, drug-eluting surfaces, and titania nanotube arrays. These methods have all shown some initial improved, but no approach has proven durable over long periods of time. Superhemophobic surfaces are a new approach to improving performance of medical devices, but the interactions of blood components and bacteria with these surfaces have not been well-documented. In this work, superhemophobic surfaces were developed by modifying the surface topography and surface chemistry of titanium. The surface topography was modified by creating titania nanotube arrays through a well-documented anodization and chemical etching technique. Superhemophobicity was induced by modifying the titania nanotube arrays with different silanes using chemical vapor deposition. The investigations of blood interactions with superhemophobic surfaces showed reduced protein adsorption. The bacteria adhesion studies showed reduced attachment for both gram-positive and gram-negative bacteria. The results indicate these surfaces have potential for enhancing material hemocompatibility and reducing the attachment of bacteria.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Biomedical engineering.
$3
588770
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0541
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Colorado State University.
$b
Mechanical Engineering.
$3
1178987
773
0
$t
Masters Abstracts International
$g
57-01(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10604136
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入