語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Wing kinematics and flexibility for ...
~
Queen's University (Canada).
Wing kinematics and flexibility for optimal manoeuvring and escape.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Wing kinematics and flexibility for optimal manoeuvring and escape./
作者:
Wong, Jaime Gustav.
面頁冊數:
1 online resource (186 pages)
附註:
Source: Dissertation Abstracts International, Volume: 75-01C.
Contained By:
Dissertation Abstracts International75-01C.
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
Wing kinematics and flexibility for optimal manoeuvring and escape.
Wong, Jaime Gustav.
Wing kinematics and flexibility for optimal manoeuvring and escape.
- 1 online resource (186 pages)
Source: Dissertation Abstracts International, Volume: 75-01C.
Thesis (Ph.D.)
Includes bibliographical references
Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Wing kinematics and flexibility for optimal manoeuvring and escape.
LDR
:02676ntm a2200325Ki 4500
001
908891
005
20180416072033.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
035
$a
(MiAaPQ)AAI10645197
035
$a
(MiAaPQ)QueensUCan197415931
035
$a
AAI10645197
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Wong, Jaime Gustav.
$3
1179270
245
1 0
$a
Wing kinematics and flexibility for optimal manoeuvring and escape.
264
0
$c
2017
300
$a
1 online resource (186 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 75-01C.
502
$a
Thesis (Ph.D.)
$c
Queen's University (Canada)
$d
2017.
504
$a
Includes bibliographical references
520
$a
Understanding how animals control the dynamic stall vortices in their wake is critical to developing micro-aerial vehicles and autonomous underwater vehicles, not to mention wind turbines, delta wings, and rotor craft that undergo similar dynamic stall processes. Applying this knowledge to biomimetic engineering problems requires progress in three areas: (i) understanding the flow physics of natural swimmers and flyers; (ii) developing flow measurement techniques to resolve this physics; and (iii) deriving low-cost models suitable for studying the vast parameter space observed in nature. This body of work, which consists of five research chapters, focuses on the leading-edge vortex (LEV) that forms on profiles undergoing rapid manoeuvres, delta wings, and similar devices. Lagrangian particle tracking is used throughout this thesis to track the mass and circulation transport in the LEV on manoeuvring profiles. The growth and development of the LEV is studied in relation to: flapping and plunging profile kinematics; spanwise flow from profile sweep and spanwise profile bending; and varying the angle-of-attack gradient along the profile span. Finally, scaling relationships derived from the observations above are used to develop a low-cost model for LEV growth, that is validated on a flat-plate delta wing. Together these results contribute to each of the three topics identified above, as a step towards developing robust, agile biomimetic swimmers and flyers.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Aerospace engineering.
$3
686400
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0538
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Queen's University (Canada).
$3
1148613
773
0
$t
Dissertation Abstracts International
$g
75-01C.
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10645197
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入