語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bang-Bang Practical Stabilization of...
~
University of Toronto (Canada).
Bang-Bang Practical Stabilization of Rigid Bodies.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Bang-Bang Practical Stabilization of Rigid Bodies./
作者:
Serpelloni, Edoardo.
面頁冊數:
1 online resource (163 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Contained By:
Dissertation Abstracts International79-04B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355455922
Bang-Bang Practical Stabilization of Rigid Bodies.
Serpelloni, Edoardo.
Bang-Bang Practical Stabilization of Rigid Bodies.
- 1 online resource (163 pages)
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355455922Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Bang-Bang Practical Stabilization of Rigid Bodies.
LDR
:03816ntm a2200385Ki 4500
001
909089
005
20180419121556.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355455922
035
$a
(MiAaPQ)AAI10242208
035
$a
(MiAaPQ)toronto:15051
035
$a
AAI10242208
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Serpelloni, Edoardo.
$3
1179640
245
1 0
$a
Bang-Bang Practical Stabilization of Rigid Bodies.
264
0
$c
2017
300
$a
1 online resource (163 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
500
$a
Advisers: Manfredi Maggiore; Christopher J. Damaren.
502
$a
Thesis (Ph.D.)
$c
University of Toronto (Canada)
$d
2017.
504
$a
Includes bibliographical references
520
$a
In this thesis, we study the problem of designing a practical stabilizer for a rigid body equipped with a set of actuators generating only constant thrust. Our motivation stems from the fact that modern space missions are required to accurately control the position and orientation of spacecraft actuated by constant-thrust jet-thrusters. To comply with the performance limitations of modern thrusters, we design a feedback controller that does not induce high-frequency switching of the actuators.
520
$a
The proposed controller is hybrid and it asymptotically stabilizes an arbitrarily small compact neighborhood of the target position and orientation of the rigid body. The controller is characterized by a hierarchical structure comprising of two control layers. At the low level of the hierarchy, an attitude controller stabilizes the target orientation of the rigid body. At the high level, after the attitude controller has steered the rigid body sufficiently close to its desired orientation, a position controller stabilizes the desired position. The size of the neighborhood being stabilized by the controller can be adjusted via a proper selection of the controller parameters. This allows us to stabilize the rigid body to virtually any degree of accuracy. It is shown that the controller, even in the presence of measurement noise, does not induce high-frequency switching of the actuators. The key component in the design of the controller is a hybrid stabilizer for the origin of double-integrators affected by bounded external perturbations. Specifically, both the position and the attitude stabilizers consist of multiple copies of such a double-integrator controller.
520
$a
The proposed controller is applied to two realistic spacecraft control problems. First, we apply the position controller to the problem of stabilizing the relative position between two spacecraft flying in formation in the vicinity of the L2 libration point of the Sun-Earth system as a part of a large space telescope. The proposed position controller represents the first feedback strategy to guarantee the accuracy level required by this class of space missions using real-life electric thrusters. The final controller is applied to the control of a large space vehicle performing rendezvous and docking operations with the International Space Station. It is shown that the controller guarantees a safe docking even under the effects of biases in the placement of the on-board thrusters.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
650
4
$a
Aerospace engineering.
$3
686400
650
4
$a
Engineering.
$3
561152
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
690
$a
0538
690
$a
0537
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Toronto (Canada).
$b
Electrical and Computer Engineering.
$3
1148628
773
0
$t
Dissertation Abstracts International
$g
79-04B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10242208
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入