語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Meta-Omics-Derived Structure, Functi...
~
Columbia University.
Meta-Omics-Derived Structure, Function, and Activity of Mixed Microbial Communities Driving Biological Nutrient Removal and Recovery.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Meta-Omics-Derived Structure, Function, and Activity of Mixed Microbial Communities Driving Biological Nutrient Removal and Recovery./
作者:
Annavajhala, Medini.
面頁冊數:
1 online resource (139 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-10(E), Section: B.
Contained By:
Dissertation Abstracts International78-10B(E).
標題:
Environmental engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369790092
Meta-Omics-Derived Structure, Function, and Activity of Mixed Microbial Communities Driving Biological Nutrient Removal and Recovery.
Annavajhala, Medini.
Meta-Omics-Derived Structure, Function, and Activity of Mixed Microbial Communities Driving Biological Nutrient Removal and Recovery.
- 1 online resource (139 pages)
Source: Dissertation Abstracts International, Volume: 78-10(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Improved process design and operation of systems engineered for the biological removal and recovery of carbon, nitrogen, and phosphorus from waste streams requires an understanding of the mixed microbial communities employed. While traditional microbiology techniques have been used to characterize the metabolic capability and activity of some organisms responsible for nutrient cycling, the metabolism of novel organisms and dynamics of complex microbial communities have been insufficiently revealed. The development and increased commercial availability of next-generation sequencing technology over the last 5-7 years has led to immense data-gathering capabilities from biological systems at the DNA ((meta)genomics), RNA ((meta)transcriptomics), and protein ((meta)proteomics) levels. However, the application of next-generation sequencing and bioinformatics to engineered biological processes remains rare, and major gaps still exist in the reference databases and metabolic understanding of single organisms (genomics) and mixed communities (metagenomics) driving biological nutrient removal and recovery in wastewater and food waste. This dissertation therefore had several major objectives: (1) Improving understanding of microbial conversion of food waste to volatile fatty acids; (2) Surveying pilot- and full-scale global biological nitrogen removal communities; (3) Application of mainstream deammonification; and (4) Adding to the sparse genomic reference database related to enhanced biological phosphorus removal (EBPR). The model of acidogenesis and acetogenesis from food waste was significantly expanded, and used to link shifts in microbial community structure and functional potential, caused by varying reactor operating conditions, to the production and speciation of volatile fatty acids for a variety of endpoint uses. Unexpected trends in the microbial ecology and functional potential of global full-scale systems were also uncovered, indicating opportunity for further enhancement of nitrogen removal through microbial community selection as a response to increasingly stringent nitrogen discharge permit levels. At the lab-scale, energy- and cost-saving anaerobic ammonia oxidation (anammox) was successfully applied as an alternative to conventional biological nitrogen removal under suboptimal mainstream wastewater conditions without constant bioaugmentation. Lastly, the annotation of PAO and GAO metagenomes from highly enriched cultures for which long-term morphological, physiological, and performance data were available allowed for increased confidence in the resulting genetic insights into the anaerobic metabolism and denitrification capabilities of these organisms. A systems biology approach to the analysis of engineered bioprocesses provided insights on microbial community structure and functional capabilities which were previously unavailable and unattainable. Ultimately, the work reported here will lead to better diagnoses of underlying issues in problematic bioreactors and smarter design of new wastewater and food waste treatment options.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369790092Subjects--Topical Terms:
557376
Environmental engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Meta-Omics-Derived Structure, Function, and Activity of Mixed Microbial Communities Driving Biological Nutrient Removal and Recovery.
LDR
:04454ntm a2200361Ki 4500
001
909121
005
20180419121556.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369790092
035
$a
(MiAaPQ)AAI10266144
035
$a
(MiAaPQ)columbia:13842
035
$a
AAI10266144
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Annavajhala, Medini.
$3
1179692
245
1 0
$a
Meta-Omics-Derived Structure, Function, and Activity of Mixed Microbial Communities Driving Biological Nutrient Removal and Recovery.
264
0
$c
2017
300
$a
1 online resource (139 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-10(E), Section: B.
500
$a
Adviser: Kartik Chandran.
502
$a
Thesis (Ph.D.)
$c
Columbia University
$d
2017.
504
$a
Includes bibliographical references
520
$a
Improved process design and operation of systems engineered for the biological removal and recovery of carbon, nitrogen, and phosphorus from waste streams requires an understanding of the mixed microbial communities employed. While traditional microbiology techniques have been used to characterize the metabolic capability and activity of some organisms responsible for nutrient cycling, the metabolism of novel organisms and dynamics of complex microbial communities have been insufficiently revealed. The development and increased commercial availability of next-generation sequencing technology over the last 5-7 years has led to immense data-gathering capabilities from biological systems at the DNA ((meta)genomics), RNA ((meta)transcriptomics), and protein ((meta)proteomics) levels. However, the application of next-generation sequencing and bioinformatics to engineered biological processes remains rare, and major gaps still exist in the reference databases and metabolic understanding of single organisms (genomics) and mixed communities (metagenomics) driving biological nutrient removal and recovery in wastewater and food waste. This dissertation therefore had several major objectives: (1) Improving understanding of microbial conversion of food waste to volatile fatty acids; (2) Surveying pilot- and full-scale global biological nitrogen removal communities; (3) Application of mainstream deammonification; and (4) Adding to the sparse genomic reference database related to enhanced biological phosphorus removal (EBPR). The model of acidogenesis and acetogenesis from food waste was significantly expanded, and used to link shifts in microbial community structure and functional potential, caused by varying reactor operating conditions, to the production and speciation of volatile fatty acids for a variety of endpoint uses. Unexpected trends in the microbial ecology and functional potential of global full-scale systems were also uncovered, indicating opportunity for further enhancement of nitrogen removal through microbial community selection as a response to increasingly stringent nitrogen discharge permit levels. At the lab-scale, energy- and cost-saving anaerobic ammonia oxidation (anammox) was successfully applied as an alternative to conventional biological nitrogen removal under suboptimal mainstream wastewater conditions without constant bioaugmentation. Lastly, the annotation of PAO and GAO metagenomes from highly enriched cultures for which long-term morphological, physiological, and performance data were available allowed for increased confidence in the resulting genetic insights into the anaerobic metabolism and denitrification capabilities of these organisms. A systems biology approach to the analysis of engineered bioprocesses provided insights on microbial community structure and functional capabilities which were previously unavailable and unattainable. Ultimately, the work reported here will lead to better diagnoses of underlying issues in problematic bioreactors and smarter design of new wastewater and food waste treatment options.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Environmental engineering.
$3
557376
650
4
$a
Microbiology.
$3
591510
650
4
$a
Ecology.
$3
575279
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0775
690
$a
0410
690
$a
0329
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Columbia University.
$b
Earth and Environmental Engineering.
$3
1179623
773
0
$t
Dissertation Abstracts International
$g
78-10B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10266144
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入