語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Analytical and experimental investig...
~
Purdue University.
Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue./
作者:
Mobasher Moghaddam, Sina.
面頁冊數:
1 online resource (144 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Contained By:
Dissertation Abstracts International78-03B(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369051278
Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue.
Mobasher Moghaddam, Sina.
Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue.
- 1 online resource (144 pages)
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369051278Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue.
LDR
:03710ntm a2200373Ki 4500
001
909449
005
20180426100011.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369051278
035
$a
(MiAaPQ)AAI10150086
035
$a
(MiAaPQ)purdue:19717
035
$a
AAI10150086
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Mobasher Moghaddam, Sina.
$3
1180244
245
1 0
$a
Analytical and experimental investigation of microstructural alterations in bearing steel in rolling contact fatigue.
264
0
$c
2016
300
$a
1 online resource (144 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
500
$a
Adviser: Farshid Sadeghi.
502
$a
Thesis (Ph.D.)
$c
Purdue University
$d
2016.
504
$a
Includes bibliographical references
520
$a
Rolling Contact Fatigue (RCF) is one the most common failure modes in bearings. RCF is usually associated with particular microstructural alterations. Such alterations (i.e. white etching cracks, butterflies, etc.) which lead to RCF failure are known to be among the most concerning matters to bearing industry.
520
$a
In the current work, an analytical as well as experimental approaches are used to investigate "butterfly wing" formation, crack initiation and propagation from inclusions. A new damage evolution equation coupled with a FE model is employed to account for the effect of mean stresses and alternating stresses simultaneously to investigate butterfly formation. The proposed damage evolution law matches experimentally observed butterfly orientation, shape, and size successfully. The model is used to obtain S-N results for butterfly formation at different Hertzian load levels. The results corroborate well with the experimental data available in the open literature. The model is used to predict debonding at the inclusion/matrix interface and the most vulnerable regions for crack initiation on butterfly/matrix interface.
520
$a
A new variable called butterfly formation index (BFI) is introduced to manifest the dependence of wing formation on depth. The value of critical damage inside the butterfly wings was obtained experimentally and was then used to simulate damage evolution. Voronoi tessellation was used to develop the FEM domains to capture the effect of microstructural randomness on butterfly wing formation, crack initiation and propagation. Then, the effects of different inclusion characteristics such as size, depth, and stiffness on RCF life are studied. The results show that stiffness of an inclusion and its location has a significant effect on the RCF life: stiffer inclusions and inclusions located at the depth of maximum shear stress reversal are more detrimental to the RCF life. Stress concentrations are not significantly affected by inclusion size for the cases investigated; however, a stereology study showed that larger inclusions have a higher chance to be located at the critical depth and cause failure. Crack maps were recorded and compared to spall geometries observed experimentally. The results show that crack initiation locations and final spall shapes are similar to what has been observed in failed bearings.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Materials science.
$3
557839
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0794
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Purdue University.
$b
Mechanical Engineering.
$3
845672
773
0
$t
Dissertation Abstracts International
$g
78-03B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10150086
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入