語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Non-uniform Erosion and Surface Evol...
~
Matthes, Christopher Stanley Rutter.
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion./
作者:
Matthes, Christopher Stanley Rutter.
面頁冊數:
1 online resource (179 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-01(E), Section: B.
Contained By:
Dissertation Abstracts International78-01B(E).
標題:
Aerospace engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369134230
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion.
Matthes, Christopher Stanley Rutter.
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion.
- 1 online resource (179 pages)
Source: Dissertation Abstracts International, Volume: 78-01(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also discussed, corresponding to a design analysis of the current experimental study.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369134230Subjects--Topical Terms:
686400
Aerospace engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion.
LDR
:03388ntm a2200349Ki 4500
001
909466
005
20180426100012.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369134230
035
$a
(MiAaPQ)AAI10158415
035
$a
(MiAaPQ)ucla:14868
035
$a
AAI10158415
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Matthes, Christopher Stanley Rutter.
$3
1180265
245
1 0
$a
Non-uniform Erosion and Surface Evolution of Plasma-Facing Materials for Electric Propulsion.
264
0
$c
2016
300
$a
1 online resource (179 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-01(E), Section: B.
500
$a
Adviser: Nasr M. Ghoniem.
502
$a
Thesis (Ph.D.)
$c
University of California, Los Angeles
$d
2016.
504
$a
Includes bibliographical references
520
$a
A study regarding the surface evolution of plasma-facing materials is presented. Experimental efforts were performed in the UCLA Pi Facility, designed to explore the physics of plasma-surface interactions. The influence of micro-architectured surfaces on the effects of plasma sputtering is compared with the response of planar samples. Ballistic deposition of sputtered atoms as a result of geometric re-trapping is observed. This provides a self-healing mechanism of micro-architectured surfaces during plasma exposure. This result is quantified using a QCM to demonstrate the evolution of surface features and the corresponding influence on the instantaneous sputtering yield. The sputtering yield of textured molybdenum samples exposed to 300 eV Ar plasma is found to be roughly 1 of the 2 corresponding value of flat samples, and increases with ion fluence. Mo samples exhibited a sputtering yield initially as low as 0.22+/-8%, converging to 0.4+/-8% at high fluence. Although the yield is dependent on the initial surface structure, it is shown to be transient, reaching a steady-state value that is independent of initial surface conditions. A continuum model of surface evolution resulting from sputtering, deposition and surface diffusion is also derived to resemble the damped Kuramoto-Sivashinsky (KS) equation of non-linear dynamics. Linear stability analysis of the evolution equation provides an estimate of the selected wavelength, and its dependence on the ion energy and angle of incidence. The analytical results are confirmed by numerical simulations of the equation with a Fast Fourier Transform method. It is shown that for an initially flat surface, small perturbations lead to the evolution of a selected surface pattern that has nano- scale wavelength. When the surface is initially patterned by other means, the final resulting pattern is a competition between the "templated" pattern and the "self-organized" structure. Potential future routes of research are also discussed, corresponding to a design analysis of the current experimental study.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Aerospace engineering.
$3
686400
650
4
$a
Mechanical engineering.
$3
557493
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0538
690
$a
0548
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of California, Los Angeles.
$b
Aerospace Engineering.
$3
1180266
773
0
$t
Dissertation Abstracts International
$g
78-01B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10158415
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入