語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Integration of virus-like particle m...
~
University of Maryland, College Park.
Integration of virus-like particle macromolecular bioreceptors in electrochemical biosensors.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Integration of virus-like particle macromolecular bioreceptors in electrochemical biosensors./
作者:
Zang, Faheng.
面頁冊數:
1 online resource (160 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Contained By:
Dissertation Abstracts International78-03B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369146370
Integration of virus-like particle macromolecular bioreceptors in electrochemical biosensors.
Zang, Faheng.
Integration of virus-like particle macromolecular bioreceptors in electrochemical biosensors.
- 1 online resource (160 pages)
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
This item is not available from ProQuest Dissertations & Theses.
Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369146370Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Integration of virus-like particle macromolecular bioreceptors in electrochemical biosensors.
LDR
:03896ntm a2200397Ki 4500
001
909474
005
20180426100012.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369146370
035
$a
(MiAaPQ)AAI10159709
035
$a
(MiAaPQ)umd:17272
035
$a
AAI10159709
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Zang, Faheng.
$3
1180275
245
1 0
$a
Integration of virus-like particle macromolecular bioreceptors in electrochemical biosensors.
264
0
$c
2016
300
$a
1 online resource (160 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
500
$a
Adviser: Reza Ghodssi.
502
$a
Thesis (Ph.D.)
$c
University of Maryland, College Park
$d
2016.
504
$a
Includes bibliographical references
506
$a
This item is not available from ProQuest Dissertations & Theses.
520
$a
Rapid, sensitive and selective detection of chemical hazards and biological pathogens has shown growing importance in the fields of homeland security, public safety and personal health. In the past two decades, efforts have been focusing on performing point-of-care chemical and biological detections using miniaturized biosensors. These sensors convert target molecule binding events into measurable electrical signals for quantifying target molecule concentration. However, the low receptor density and the use of complex surface chemistry in receptors immobilization on transducers are common bottlenecks in the current biosensor development, adding to the cost, complexity and time. This dissertation presents the development of selective macromolecular Tobacco mosaic virus-like particle (TMV VLP) biosensing receptor, and the microsystem integration of VLPs in microfabricated electrochemical biosensors for rapid and performance-enhanced chemical and biological sensing.
520
$a
Two constructs of VLPs carrying different receptor peptides targeting at 2,4,6-trinitrotoluene (TNT) explosive or anti-FLAG antibody are successfully bioengineered. The VLP-based TNT electrochemical sensor utilizes unique diffusion modulation method enabled by biological binding between target TNT and receptor VLP. The method avoids the influence from any interfering species and environmental background signals, making it extremely suitable for directly quantifying the TNT level in a sample. It is also a rapid method that does not need any sensor surface functionalization process. For antibody sensing, the VLPs carrying both antibody binding peptides and cysteine residues are assembled onto the gold electrodes of an impedance microsensor. With two-phase immunoassays, the VLP-based impedance sensor is able to quantify antibody concentrations down to 9.1 ng/mL.
520
$a
A capillary microfluidics and impedance sensor integrated microsystem is developed to further accelerate the process of VLP assembly on sensors and improve the sensitivity. Open channel capillary micropumps and stop-valves facilitate localized and evaporation-assisted VLP assembly on sensor electrodes within 6 minutes. The VLP-functionalized impedance sensor is capable of label-free sensing of antibodies with the detection limit of 8.8 ng/mL within 5 minutes after sensor functionalization, demonstrating great potential of VLP-based sensors for rapid and on-demand chemical and biological sensing.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
650
4
$a
Biomedical engineering.
$3
588770
650
4
$a
Mechanical engineering.
$3
557493
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
690
$a
0541
690
$a
0548
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Maryland, College Park.
$b
Electrical Engineering.
$3
845418
773
0
$t
Dissertation Abstracts International
$g
78-03B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10159709
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入