語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dynamic breathing lung models for he...
~
Jahani, Nariman.
Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function./
作者:
Jahani, Nariman.
面頁冊數:
1 online resource (121 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-05(E), Section: B.
Contained By:
Dissertation Abstracts International78-05B(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369304435
Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function.
Jahani, Nariman.
Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function.
- 1 online resource (121 pages)
Source: Dissertation Abstracts International, Volume: 78-05(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
We develop dynamic breathing lung models for healthy and asthmatic subjects by utilizing two or multiple volumetric multi-detector-row computed tomographic (MDCT) of lung images acquired from both static CT and four-dimensional CT (4D-CT) scans. A mass preserving image registration is utilized to derive local variables including Jacobian (ratio of volume change) and maximum shear strain or anisotropic deformation index (ADI) for assessment of lung deformation, and local air volume and flow rate for assessment of regional ventilation. First, lung image data of six normal human subjects acquired at three static inflation levels, 20% of vital capacity (VC), 60% VC and 80% VC, are used to evaluate the non-linear characteristics of the human lung during deep breathing. We quantify the non-linearity by comparing the variables which are interpolated linearly between 20% and 80% VC images with those of direct registration of 20%, 60% and 80%VC images to observe how the results are deviated from linear curves. Then, we assess regional ventilation, nonlinearity, and hysteresis of the lung motion during dynamic breathing using 4D-CT data sets. Six healthy adult humans are studied during controlled tidal breathing as well as during total lung capacity (TLC) and functional residual capacity (FRC) breath holds. Results from static analysis are utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system is employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Lobar distributions of air volume change during tidal breathing are correlated with those of deep breathing to differentiate regional ventilation between deep and tidal breathing. With ADI, we are able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. In addition, 4D-CT data sets for six mild/moderate asthmatic subjects are added during tidal breathing following acquisition of two static scans at TLC and FRC. We analyze those data to assess ventilation heterogeneity, non-linear deformation and hysteresis of lung motion to distinguish regional and global features of asthmatic lungs from those of healthy lungs during breathing. Eventually, 4D-CT data for healthy and asthmatic lungs are utilized to derive physiologically consistent boundary conditions for computational fluid dynamic (CFD) simulation of airflow in the human lungs during tidal breathing. We investigate the effect of dynamic breathing on air flow distribution and pressure drop along the central airways.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369304435Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function.
LDR
:03979ntm a2200337Ki 4500
001
909534
005
20180426100013.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369304435
035
$a
(MiAaPQ)AAI10181917
035
$a
(MiAaPQ)uiowa:14710
035
$a
AAI10181917
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Jahani, Nariman.
$3
1180360
245
1 0
$a
Dynamic breathing lung models for healthy and asthmatic subjects based on assessment of regional lung function.
264
0
$c
2016
300
$a
1 online resource (121 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-05(E), Section: B.
500
$a
Adviser: Ching-Long Lin.
502
$a
Thesis (Ph.D.)
$c
The University of Iowa
$d
2016.
504
$a
Includes bibliographical references
520
$a
We develop dynamic breathing lung models for healthy and asthmatic subjects by utilizing two or multiple volumetric multi-detector-row computed tomographic (MDCT) of lung images acquired from both static CT and four-dimensional CT (4D-CT) scans. A mass preserving image registration is utilized to derive local variables including Jacobian (ratio of volume change) and maximum shear strain or anisotropic deformation index (ADI) for assessment of lung deformation, and local air volume and flow rate for assessment of regional ventilation. First, lung image data of six normal human subjects acquired at three static inflation levels, 20% of vital capacity (VC), 60% VC and 80% VC, are used to evaluate the non-linear characteristics of the human lung during deep breathing. We quantify the non-linearity by comparing the variables which are interpolated linearly between 20% and 80% VC images with those of direct registration of 20%, 60% and 80%VC images to observe how the results are deviated from linear curves. Then, we assess regional ventilation, nonlinearity, and hysteresis of the lung motion during dynamic breathing using 4D-CT data sets. Six healthy adult humans are studied during controlled tidal breathing as well as during total lung capacity (TLC) and functional residual capacity (FRC) breath holds. Results from static analysis are utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system is employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Lobar distributions of air volume change during tidal breathing are correlated with those of deep breathing to differentiate regional ventilation between deep and tidal breathing. With ADI, we are able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. In addition, 4D-CT data sets for six mild/moderate asthmatic subjects are added during tidal breathing following acquisition of two static scans at TLC and FRC. We analyze those data to assess ventilation heterogeneity, non-linear deformation and hysteresis of lung motion to distinguish regional and global features of asthmatic lungs from those of healthy lungs during breathing. Eventually, 4D-CT data for healthy and asthmatic lungs are utilized to derive physiologically consistent boundary conditions for computational fluid dynamic (CFD) simulation of airflow in the human lungs during tidal breathing. We investigate the effect of dynamic breathing on air flow distribution and pressure drop along the central airways.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Iowa.
$b
Mechanical Engineering.
$3
845658
773
0
$t
Dissertation Abstracts International
$g
78-05B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10181917
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入