語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Uniformization of semistable bundles...
~
University of California, Berkeley.
Uniformization of semistable bundles on elliptic curves.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Uniformization of semistable bundles on elliptic curves./
作者:
Li, Penghui.
面頁冊數:
1 online resource (63 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Contained By:
Dissertation Abstracts International78-03B(E).
標題:
Mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9781369056181
Uniformization of semistable bundles on elliptic curves.
Li, Penghui.
Uniformization of semistable bundles on elliptic curves.
- 1 online resource (63 pages)
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Let G be a connected reductive complex algebraic group, and E a complex elliptic curve. Let GE denote the connected component of the trivial bundle in the stack of semistable G-bundles on E. We introduce a complex analytic uniformization of GE by adjoint quotients of reductive subgroups of the loop group of G. This can be viewed as a nonabelian version of the classical complex analytic uniformization E≃ C*/qZ. We similarly construct a complex analytic uniformization of G itself via the exponential map, providing a nonabelian version of the standard isomorphism C* ≃ C/Z, and a complex analytic uniformization of GE generalizing the standard presentation E = C/(Z ⊕ Ztau). Finally, we apply these results to the study of sheaves with nilpotent singular support.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369056181Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Uniformization of semistable bundles on elliptic curves.
LDR
:02061ntm a2200349Ki 4500
001
909636
005
20180426091041.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369056181
035
$a
(MiAaPQ)AAI10150853
035
$a
(MiAaPQ)berkeley:15997
035
$a
AAI10150853
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Li, Penghui.
$3
1180509
245
1 0
$a
Uniformization of semistable bundles on elliptic curves.
264
0
$c
2016
300
$a
1 online resource (63 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-03(E), Section: B.
500
$a
Adviser: David Nadler.
502
$a
Thesis (Ph.D.)
$c
University of California, Berkeley
$d
2016.
504
$a
Includes bibliographical references
520
$a
Let G be a connected reductive complex algebraic group, and E a complex elliptic curve. Let GE denote the connected component of the trivial bundle in the stack of semistable G-bundles on E. We introduce a complex analytic uniformization of GE by adjoint quotients of reductive subgroups of the loop group of G. This can be viewed as a nonabelian version of the classical complex analytic uniformization E≃ C*/qZ. We similarly construct a complex analytic uniformization of G itself via the exponential map, providing a nonabelian version of the standard isomorphism C* ≃ C/Z, and a complex analytic uniformization of GE generalizing the standard presentation E = C/(Z ⊕ Ztau). Finally, we apply these results to the study of sheaves with nilpotent singular support.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
650
4
$a
Theoretical mathematics.
$3
1180455
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
690
$a
0642
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of California, Berkeley.
$b
Mathematics.
$3
1180510
773
0
$t
Dissertation Abstracts International
$g
78-03B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10150853
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入