語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Using Wavelet Bases to Separate Scal...
~
Michlin, Tracie L.
Using Wavelet Bases to Separate Scales in Quantum Field Theory.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Using Wavelet Bases to Separate Scales in Quantum Field Theory./
作者:
Michlin, Tracie L.
面頁冊數:
1 online resource (79 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Contained By:
Dissertation Abstracts International78-12B(E).
標題:
Applied mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9780355106572
Using Wavelet Bases to Separate Scales in Quantum Field Theory.
Michlin, Tracie L.
Using Wavelet Bases to Separate Scales in Quantum Field Theory.
- 1 online resource (79 pages)
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355106572Subjects--Topical Terms:
1069907
Applied mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Using Wavelet Bases to Separate Scales in Quantum Field Theory.
LDR
:02182ntm a2200361Ki 4500
001
909694
005
20180426091043.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355106572
035
$a
(MiAaPQ)AAI10257244
035
$a
(MiAaPQ)uiowa:14868
035
$a
AAI10257244
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Michlin, Tracie L.
$3
1180601
245
1 0
$a
Using Wavelet Bases to Separate Scales in Quantum Field Theory.
264
0
$c
2017
300
$a
1 online resource (79 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
500
$a
Adviser: Wayne N. Polyzou.
502
$a
Thesis (Ph.D.)
$c
The University of Iowa
$d
2017.
504
$a
Includes bibliographical references
520
$a
This thesis investigates the use of Daubechies wavelets to separate scales in local quantum field theory. Field theories have an infinite number of degrees of freedom on all distance scales. Quantum field theories are believed to describe the physics of subatomic particles. These theories have no known mathematically convergent approximation methods. Daubechies wavelet bases can be used separate degrees of freedom on different distance scales. Volume and resolution truncations lead to mathematically well-defined truncated theories that can be treated using established methods. This work demonstrates that flow equation methods can be used to block diagonalize truncated field theoretic Hamiltonians by scale. This eliminates the fine scale degrees of freedom. This may lead to approximation methods and provide an understanding of how to formulate well-defined fine resolution limits.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Applied mathematics.
$3
1069907
650
4
$a
Mathematics.
$3
527692
650
4
$a
Physics.
$3
564049
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0364
690
$a
0405
690
$a
0605
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Iowa.
$b
Applied Mathematical and Computational Sciences.
$3
1179130
773
0
$t
Dissertation Abstracts International
$g
78-12B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10257244
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入