語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Augmentations and Exact Lagrangian C...
~
Pan, Yu.
Augmentations and Exact Lagrangian Cobordisms.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Augmentations and Exact Lagrangian Cobordisms./
作者:
Pan, Yu.
面頁冊數:
1 online resource (124 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Contained By:
Dissertation Abstracts International78-09B(E).
標題:
Mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9781369719611
Augmentations and Exact Lagrangian Cobordisms.
Pan, Yu.
Augmentations and Exact Lagrangian Cobordisms.
- 1 online resource (124 pages)
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
To a Legendrian knot, one can associate an Ainfinity category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor of the augmentation categories of the two knots. We study the functor and establish a long exact sequence relating the corresponding cohomology of morphisms of the two ends. As applications, we prove that the functor between augmentation categories is injective on the level of equivalence classes of objects and find new obstructions to the existence of exact Lagrangian cobordisms in terms of linearized contact homology and ruling polynomials.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369719611Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Augmentations and Exact Lagrangian Cobordisms.
LDR
:02371ntm a2200349Ki 4500
001
909699
005
20180426091044.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369719611
035
$a
(MiAaPQ)AAI10257951
035
$a
(MiAaPQ)duke:13846
035
$a
AAI10257951
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Pan, Yu.
$3
1180608
245
1 0
$a
Augmentations and Exact Lagrangian Cobordisms.
264
0
$c
2017
300
$a
1 online resource (124 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
500
$a
Adviser: Lenhard Ng.
502
$a
Thesis (Ph.D.)
$c
Duke University
$d
2017.
504
$a
Includes bibliographical references
520
$a
To a Legendrian knot, one can associate an Ainfinity category, the augmentation category. An exact Lagrangian cobordism between two Legendrian knots gives a functor of the augmentation categories of the two knots. We study the functor and establish a long exact sequence relating the corresponding cohomology of morphisms of the two ends. As applications, we prove that the functor between augmentation categories is injective on the level of equivalence classes of objects and find new obstructions to the existence of exact Lagrangian cobordisms in terms of linearized contact homology and ruling polynomials.
520
$a
As a related project, we study exact Lagrangian fillings of Legendrian (2,n) links. For a Legendrian (2,n) torus knot or link with maximal Thurston--Bennequin number, Ekholm, Honda, and Kalman constructed Cn exact Lagrangian fillings, where Cn is the n--th Catalan number. We show that these exact Lagrangian fillings are pairwise non--isotopic through exact Lagrangian isotopy. To do that, we compute the augmentations induced by the exact Lagrangian fillings L to Z2[H1( L)] and distinguish the resulting augmentations.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Duke University.
$b
Mathematics.
$3
1180607
773
0
$t
Dissertation Abstracts International
$g
78-09B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10257951
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入