Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Complete Mirror Pairs and Their Naiv...
~
ProQuest Information and Learning Co.
Complete Mirror Pairs and Their Naive Stringy Hodge Numbers.
Record Type:
Language materials, manuscript : Monograph/item
Title/Author:
Complete Mirror Pairs and Their Naive Stringy Hodge Numbers./
Author:
Fitzpatrick, Brian David.
Description:
1 online resource (134 pages)
Notes:
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Contained By:
Dissertation Abstracts International78-09B(E).
Subject:
Mathematics. -
Online resource:
click for full text (PQDT)
ISBN:
9781369721577
Complete Mirror Pairs and Their Naive Stringy Hodge Numbers.
Fitzpatrick, Brian David.
Complete Mirror Pairs and Their Naive Stringy Hodge Numbers.
- 1 online resource (134 pages)
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
The Batyrev-Borisov construction associates a to dual pair of nef-partitions Delta = Delta1 +˙˙˙˙ ... + Deltac and▿ = ▿1 +˙˙˙˙ ... + Delta c a pair of Calabi-Yau complete intersections (YDelta 1,...,Deltac, YDelta1,...,Delta c) in Gorenstein Fano toric varieties(XDelta, X▿ These Calabi-Yau varieties are singular in general. Batyrev and Nill have developed a generating function $\Est$ for the stringy Hodge numbers of Batyrev-Borisov mirror pairs. This function depends solely on the combinatorics of the nef-partitions and, under this framework, Batyrev-Borisov mirror pairs pass the stringy topological mirror symmetry test hp,q st(YDelta1,...,Deltac) = h p,q st(YDelta1,...,Deltac.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369721577Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Complete Mirror Pairs and Their Naive Stringy Hodge Numbers.
LDR
:02840ntm a2200349Ki 4500
001
909718
005
20180426091044.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369721577
035
$a
(MiAaPQ)AAI10261226
035
$a
(MiAaPQ)duke:14050
035
$a
AAI10261226
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Fitzpatrick, Brian David.
$3
1180632
245
1 0
$a
Complete Mirror Pairs and Their Naive Stringy Hodge Numbers.
264
0
$c
2017
300
$a
1 online resource (134 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
500
$a
Adviser: Paul S. Aspinwall.
502
$a
Thesis (Ph.D.)
$c
Duke University
$d
2017.
504
$a
Includes bibliographical references
520
$a
The Batyrev-Borisov construction associates a to dual pair of nef-partitions Delta = Delta1 +˙˙˙˙ ... + Deltac and▿ = ▿1 +˙˙˙˙ ... + Delta c a pair of Calabi-Yau complete intersections (YDelta 1,...,Deltac, YDelta1,...,Delta c) in Gorenstein Fano toric varieties(XDelta, X▿ These Calabi-Yau varieties are singular in general. Batyrev and Nill have developed a generating function $\Est$ for the stringy Hodge numbers of Batyrev-Borisov mirror pairs. This function depends solely on the combinatorics of the nef-partitions and, under this framework, Batyrev-Borisov mirror pairs pass the stringy topological mirror symmetry test hp,q st(YDelta1,...,Deltac) = h p,q st(YDelta1,...,Deltac.
520
$a
Recently, Aspinwall and Plesser have defined the notion of a complete non-reflexive mirror pair (A , B) and used this notion to study Calabi-Yau complete intersections in non-Gorenstein toric varieties. Complete mirror pairs generalize the notion of a dual pair of almost reflexive Gorenstein cones (sigma,sigma·) developed by Mavlyutov to propose a generalization of the Batyrev-Borisov mirror construction. The only known example of either of these two notions is the complete intersection of a quintic and a quadric in P5211111. We construct 2152 distinct examples of complete mirror pairs and 1077 distinct examples of dual pairs of almost reflexive Gorenstein cones. Additionally, we propose a generalization of Batyrev and Nill's stringy E-function, called the naive stringy E-function E˜st, that is well-defined for complete mirror pairs.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Duke University.
$b
Mathematics.
$3
1180607
773
0
$t
Dissertation Abstracts International
$g
78-09B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10261226
$z
click for full text (PQDT)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login