語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A Large Sieve Zero Density Estimate ...
~
ProQuest Information and Learning Co.
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
A Large Sieve Zero Density Estimate for Maass Cusp Forms./
作者:
Lewis, Paul Dunbar.
面頁冊數:
1 online resource (56 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Contained By:
Dissertation Abstracts International78-09B(E).
標題:
Theoretical mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9781369734355
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
Lewis, Paul Dunbar.
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
- 1 online resource (56 pages)
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
The large sieve method has been used extensively, beginning with Bombieri in 1965, to provide bounds on the number of zeros of Dirichlet L-functions near the line sigma = 1. Using the Kuznetsov trace formula and the work of Deshouillers and Iwaniec on Kloosterman sums, it is possible to derive large sieve inequalities for the Fourier coefficients of Maass cusp forms, which may then similarly be used to study the corresponding Hecke-Maass L-functions. Following an approach developed by Gallagher for Dirichlet L-functions, this thesis shows how the large sieve method may be used to prove a zero density estimate, averaged over the Laplace eigenvalues, for Maass cusp forms of weight zero for the congruence subgroup Gamma0(q) for any positive integer q..
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369734355Subjects--Topical Terms:
1180455
Theoretical mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
LDR
:02002ntm a2200337Ki 4500
001
909771
005
20180426091046.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369734355
035
$a
(MiAaPQ)AAI10274166
035
$a
(MiAaPQ)columbia:13938
035
$a
AAI10274166
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Lewis, Paul Dunbar.
$3
1180715
245
1 2
$a
A Large Sieve Zero Density Estimate for Maass Cusp Forms.
264
0
$c
2017
300
$a
1 online resource (56 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
500
$a
Adviser: Dorian Goldfeld.
502
$a
Thesis (Ph.D.)
$c
Columbia University
$d
2017.
504
$a
Includes bibliographical references
520
$a
The large sieve method has been used extensively, beginning with Bombieri in 1965, to provide bounds on the number of zeros of Dirichlet L-functions near the line sigma = 1. Using the Kuznetsov trace formula and the work of Deshouillers and Iwaniec on Kloosterman sums, it is possible to derive large sieve inequalities for the Fourier coefficients of Maass cusp forms, which may then similarly be used to study the corresponding Hecke-Maass L-functions. Following an approach developed by Gallagher for Dirichlet L-functions, this thesis shows how the large sieve method may be used to prove a zero density estimate, averaged over the Laplace eigenvalues, for Maass cusp forms of weight zero for the congruence subgroup Gamma0(q) for any positive integer q..
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Theoretical mathematics.
$3
1180455
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0642
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Columbia University.
$b
Mathematics.
$3
1179054
773
0
$t
Dissertation Abstracts International
$g
78-09B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10274166
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入