Language:
English
繁體中文
Help
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
Rigidity on Einstein Manifolds and S...
~
ProQuest Information and Learning Co.
Rigidity on Einstein Manifolds and Shrinking Ricci Solitons in High Dimensions.
Record Type:
Language materials, manuscript : Monograph/item
Title/Author:
Rigidity on Einstein Manifolds and Shrinking Ricci Solitons in High Dimensions./
Author:
Qian, Lihai.
Description:
1 online resource (98 pages)
Notes:
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Contained By:
Dissertation Abstracts International78-11B(E).
Subject:
Mathematics. -
Online resource:
click for full text (PQDT)
ISBN:
9780355026962
Rigidity on Einstein Manifolds and Shrinking Ricci Solitons in High Dimensions.
Qian, Lihai.
Rigidity on Einstein Manifolds and Shrinking Ricci Solitons in High Dimensions.
- 1 online resource (98 pages)
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
This thesis consists of three parts. Each part solves a geometric problem in geometric analysis using differential equations.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355026962Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Rigidity on Einstein Manifolds and Shrinking Ricci Solitons in High Dimensions.
LDR
:01980ntm a2200373Ki 4500
001
909778
005
20180426091046.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355026962
035
$a
(MiAaPQ)AAI10277540
035
$a
(MiAaPQ)cornellgrad:10265
035
$a
AAI10277540
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Qian, Lihai.
$3
1180724
245
1 0
$a
Rigidity on Einstein Manifolds and Shrinking Ricci Solitons in High Dimensions.
264
0
$c
2017
300
$a
1 online resource (98 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
500
$a
Adviser: Xiaodong Cao.
502
$a
Thesis (Ph.D.)
$c
Cornell University
$d
2017.
504
$a
Includes bibliographical references
520
$a
This thesis consists of three parts. Each part solves a geometric problem in geometric analysis using differential equations.
520
$a
The first part gives a rigidity result to high dimensional positive Einstein manifolds, by controlling the upper bound of the integration of Weyl tensor.
520
$a
Part of the idea of the second part came from the new weighted Yamabe invariant from [4]. According to the definition, we can show a rigidity theorem to highdimensional compact shrinking Ricci solitons.
520
$a
The third part is an analytical result to 4-dimensional Ricci solitons. By the Weitzenbock for Ricci solitons introduced in [5], we proved an integral version of the Weitzenbock formula.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Cornell University.
$b
Mathematics.
$3
1180725
773
0
$t
Dissertation Abstracts International
$g
78-11B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10277540
$z
click for full text (PQDT)
based on 0 review(s)
Multimedia
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login