語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Moduli of Bridgeland stable objects ...
~
Rutgers The State University of New Jersey - New Brunswick.
Moduli of Bridgeland stable objects on an Enriques surface.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Moduli of Bridgeland stable objects on an Enriques surface./
作者:
Nuer, Howard J.
面頁冊數:
1 online resource (130 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-04(E), Section: B.
Contained By:
Dissertation Abstracts International78-04B(E).
標題:
Mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9781369350241
Moduli of Bridgeland stable objects on an Enriques surface.
Nuer, Howard J.
Moduli of Bridgeland stable objects on an Enriques surface.
- 1 online resource (130 pages)
Source: Dissertation Abstracts International, Volume: 78-04(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
We construct projective moduli spaces of semistable objects on an Enriques surface for generic Bridgeland stability condition. On the way, we prove the non-emptiness of MH,Ys( v), the moduli space of Gieseker stable sheaves on an Enriques surface Y with Mukai vector v of positive rank with respect to a generic polarization H. In the case of a primitive Mukai vector on an unnodal Enriques surface, i.e. one containing no smooth rational curves, we prove irreducibility of MH,Y( v) as well. Using Bayer and Macri's construction of a natural nef divisor associated to a stability condition, we explore the relation between wall-crossing in the stability manifold and the minimal model program for Bridgeland moduli spaces. We give three applications of our machinery to obtain new information about the classical moduli spaces of Gieseker-stable sheaves: 1) We obtain a region in the ample cone of the moduli space of Gieseker-stable sheaves over Enriques surfaces. 2) We determine the nef cone of the Hilbert scheme of n points on an unnodal Enriques surface in terms of its half-pencils and the Cossec-Dolgachev &phis;-function. 3) We recover some classical results on linear systems on unnodal Enriques surfaces and obtain some new ones about n-very ample line bundles.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369350241Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Moduli of Bridgeland stable objects on an Enriques surface.
LDR
:02574ntm a2200349Ki 4500
001
909819
005
20180426091047.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369350241
035
$a
(MiAaPQ)AAI10291851
035
$a
(MiAaPQ)rutgersnb:7129
035
$a
AAI10291851
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Nuer, Howard J.
$3
1180783
245
1 0
$a
Moduli of Bridgeland stable objects on an Enriques surface.
264
0
$c
2016
300
$a
1 online resource (130 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-04(E), Section: B.
500
$a
Adviser: Lev Borisov.
502
$a
Thesis (Ph.D.)
$c
Rutgers The State University of New Jersey - New Brunswick
$d
2016.
504
$a
Includes bibliographical references
520
$a
We construct projective moduli spaces of semistable objects on an Enriques surface for generic Bridgeland stability condition. On the way, we prove the non-emptiness of MH,Ys( v), the moduli space of Gieseker stable sheaves on an Enriques surface Y with Mukai vector v of positive rank with respect to a generic polarization H. In the case of a primitive Mukai vector on an unnodal Enriques surface, i.e. one containing no smooth rational curves, we prove irreducibility of MH,Y( v) as well. Using Bayer and Macri's construction of a natural nef divisor associated to a stability condition, we explore the relation between wall-crossing in the stability manifold and the minimal model program for Bridgeland moduli spaces. We give three applications of our machinery to obtain new information about the classical moduli spaces of Gieseker-stable sheaves: 1) We obtain a region in the ample cone of the moduli space of Gieseker-stable sheaves over Enriques surfaces. 2) We determine the nef cone of the Hilbert scheme of n points on an unnodal Enriques surface in terms of its half-pencils and the Cossec-Dolgachev &phis;-function. 3) We recover some classical results on linear systems on unnodal Enriques surfaces and obtain some new ones about n-very ample line bundles.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
650
4
$a
Theoretical mathematics.
$3
1180455
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
690
$a
0642
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Rutgers The State University of New Jersey - New Brunswick.
$b
Graduate School - New Brunswick.
$3
845606
773
0
$t
Dissertation Abstracts International
$g
78-04B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10291851
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入