語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
High-Dimensional First Passage Perco...
~
The University of Chicago.
High-Dimensional First Passage Percolation and Occupation Densities of Branching Random Walk.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
High-Dimensional First Passage Percolation and Occupation Densities of Branching Random Walk./
作者:
Tang, Si.
面頁冊數:
1 online resource (81 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
Contained By:
Dissertation Abstracts International79-02B(E).
標題:
Mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9780355234916
High-Dimensional First Passage Percolation and Occupation Densities of Branching Random Walk.
Tang, Si.
High-Dimensional First Passage Percolation and Occupation Densities of Branching Random Walk.
- 1 online resource (81 pages)
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
We prove limiting theorems for two particles systems, first passage percolation (FPP) and branching random walk (BRW). For the FPP model on $\mathbb Z.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355234916Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
High-Dimensional First Passage Percolation and Occupation Densities of Branching Random Walk.
LDR
:02481ntm a2200373Ki 4500
001
909883
005
20180426091049.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355234916
035
$a
(MiAaPQ)AAI10615665
035
$a
(MiAaPQ)uchicago:14024
035
$a
AAI10615665
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Tang, Si.
$3
1180880
245
1 0
$a
High-Dimensional First Passage Percolation and Occupation Densities of Branching Random Walk.
264
0
$c
2017
300
$a
1 online resource (81 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
500
$a
Advisers: Steven P. Lalley; Antonio Auffinger.
502
$a
Thesis (Ph.D.)
$c
The University of Chicago
$d
2017.
504
$a
Includes bibliographical references
520
$a
We prove limiting theorems for two particles systems, first passage percolation (FPP) and branching random walk (BRW). For the FPP model on $\mathbb Z.
520
$a
{d}$,we show that if the passage times have finite mean, then $\displaystyle \lim_{d \to \infty} \frac{\mu(\mathbf e_{1}) d}{\log d} = \frac{1}{2a}$, where $\mu(\mathbf e_{1})$ is the time constant in the $\mathbf e_{1}$ direction and $a \in [0,\infty]$ is a constant that depends only on the distribution of the passage times at $0$. For the same class of distributions, we also prove that the limit shape is not an Euclidean ball, nor a $d$-dimensional cube or diamond, when $d$ is large enough.
520
$a
For the BRW model, we prove that the rescaled occupation densities of a one-dimensional critical BRW converge to the occupation densities of a super-Brownian motion. We further show that the limiting occupation density process is a pure-jump subordinator in $\mathcal C_{0}(\mathbb R)$, whose jumps are rescaled versions of i.i.d. copies of an Integrated super-Brownian Excursion (ISE) density, weighted by the jump sizes of a real-valued stable-$\frac{1}{2}$ subordinator.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
650
4
$a
Statistics.
$3
556824
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
690
$a
0463
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Chicago.
$b
Statistics.
$3
1180881
773
0
$t
Dissertation Abstracts International
$g
79-02B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10615665
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入