語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Random polynomials.
~
Yale University.
Random polynomials.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Random polynomials./
作者:
Nguyen, Thi Hoang Oanh.
面頁冊數:
1 online resource (118 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Contained By:
Dissertation Abstracts International78-11B(E).
標題:
Mathematics. -
電子資源:
click for full text (PQDT)
ISBN:
9780355027754
Random polynomials.
Nguyen, Thi Hoang Oanh.
Random polynomials.
- 1 online resource (118 pages)
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
In this thesis, we prove optimal local universality for roots of random polynomials with arbitrary coefficients of polynomial growth. As an application, we derive sharp estimates for the number of real roots of these polynomials, even when the coefficients are not explicit. Our results also hold for series; in particular, we prove local universality for random hyperbolic series.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355027754Subjects--Topical Terms:
527692
Mathematics.
Index Terms--Genre/Form:
554714
Electronic books.
Random polynomials.
LDR
:01534ntm a2200325Ki 4500
001
909911
005
20180426091050.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355027754
035
$a
(MiAaPQ)AAI10632526
035
$a
AAI10632526
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Nguyen, Thi Hoang Oanh.
$3
1180922
245
1 0
$a
Random polynomials.
264
0
$c
2017
300
$a
1 online resource (118 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
500
$a
Adviser: Van Vu.
502
$a
Thesis (Ph.D.)
$c
Yale University
$d
2017.
504
$a
Includes bibliographical references
520
$a
In this thesis, we prove optimal local universality for roots of random polynomials with arbitrary coefficients of polynomial growth. As an application, we derive sharp estimates for the number of real roots of these polynomials, even when the coefficients are not explicit. Our results also hold for series; in particular, we prove local universality for random hyperbolic series.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mathematics.
$3
527692
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0405
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Yale University.
$3
1178968
773
0
$t
Dissertation Abstracts International
$g
78-11B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10632526
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入