語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
MakerFluidics : = Low Cost Microflui...
~
Boston University.
MakerFluidics : = Low Cost Microfluidics for Synthetic Biology.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
MakerFluidics :/
其他題名:
Low Cost Microfluidics for Synthetic Biology.
作者:
Silva, Ryan.
面頁冊數:
1 online resource (123 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
Contained By:
Dissertation Abstracts International79-02B(E).
標題:
Biomedical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355446425
MakerFluidics : = Low Cost Microfluidics for Synthetic Biology.
Silva, Ryan.
MakerFluidics :
Low Cost Microfluidics for Synthetic Biology. - 1 online resource (123 pages)
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Recent advancements in multilayer, multicellular, genetic logic circuits often rely on manual intervention throughout the computation cycle and orthogonal signals for each chemical "wire". These constraints can prevent genetic circuits from scaling. Microfluidic devices can be used to mitigate these constraints. However, continuous-flow microfluidics are largely designed through artisanal processes involving hand-drawing features and accomplishing design rule checks visually: processes that are also inextensible. Additionally, continuous-flow microfluidic routing is only a consideration during chip design and, once built, the routing structure becomes "frozen in silicon," or for many microfluidic chips "frozen in polydimethylsiloxane (PDMS)"; any changes to fluid routing often require an entirely new device and control infrastructure. The cost of fabricating and controlling a new device is high in terms of time and money; attempts to reduce one cost measure are, generally, paid through increases in the other.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355446425Subjects--Topical Terms:
588770
Biomedical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
MakerFluidics : = Low Cost Microfluidics for Synthetic Biology.
LDR
:04066ntm a2200397Ki 4500
001
910549
005
20180517123957.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355446425
035
$a
(MiAaPQ)AAI10619471
035
$a
(MiAaPQ)bu:13267
035
$a
AAI10619471
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Silva, Ryan.
$3
1181892
245
1 0
$a
MakerFluidics :
$b
Low Cost Microfluidics for Synthetic Biology.
264
0
$c
2017
300
$a
1 online resource (123 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-02(E), Section: B.
500
$a
Advisers: Douglas M. Densmore; Jason W. Holder.
502
$a
Thesis (Ph.D.)
$c
Boston University
$d
2017.
504
$a
Includes bibliographical references
520
$a
Recent advancements in multilayer, multicellular, genetic logic circuits often rely on manual intervention throughout the computation cycle and orthogonal signals for each chemical "wire". These constraints can prevent genetic circuits from scaling. Microfluidic devices can be used to mitigate these constraints. However, continuous-flow microfluidics are largely designed through artisanal processes involving hand-drawing features and accomplishing design rule checks visually: processes that are also inextensible. Additionally, continuous-flow microfluidic routing is only a consideration during chip design and, once built, the routing structure becomes "frozen in silicon," or for many microfluidic chips "frozen in polydimethylsiloxane (PDMS)"; any changes to fluid routing often require an entirely new device and control infrastructure. The cost of fabricating and controlling a new device is high in terms of time and money; attempts to reduce one cost measure are, generally, paid through increases in the other.
520
$a
This work has three main thrusts: to create a microfluidic fabrication framework, called MakerFluidics, that lowers the barrier to entry for designing and fabricating microfluidics in a manner amenable to automation; to prove this methodology can design, fabricate, and control complex and novel microfluidic devices; and to demonstrate the methodology can be used to solve biologically-relevant problems.
520
$a
Utilizing accessible technologies, rapid prototyping, and scalable design practices, the MakerFluidics framework has demonstrated its ability to design, fabricate and control novel, complex and scalable microfludic devices. This was proven through the development of a reconfigurable, continuous-flow routing fabric driven by a modular, scalable primitive called a transposer. In addition to creating complex microfluidic networks, MakerFluidics was deployed in support of cutting-edge, application-focused research at the Charles Stark Draper Laboratory. Informed by a design of experiments approach using the parametric rapid prototyping capabilities made possible by MakerFluidics, a plastic blood--bacteria separation device was optimized, demonstrating that the new device geometry can separate bacteria from blood while operating at 275% greater flow rate as well as reduce the power requirement by 82% for equivalent separation performance when compared to the state of the art.
520
$a
Ultimately, MakerFluidics demonstrated the ability to design, fabricate, and control complex and practical microfluidic devices while lowering the barrier to entry to continuous-flow microfluidics, thus democratizing cutting edge technology beyond a handful of well-resourced and specialized labs.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Biomedical engineering.
$3
588770
650
4
$a
Computer engineering.
$3
569006
650
4
$a
Electrical engineering.
$3
596380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0541
690
$a
0464
690
$a
0544
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Boston University.
$b
Electrical & Computer Engineering ENG.
$3
1181893
773
0
$t
Dissertation Abstracts International
$g
79-02B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10619471
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入