語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-scale Modeling of Cellulosic P...
~
Huang, Wenjun.
Multi-scale Modeling of Cellulosic Polymers for Optimal Drug Delivery Properties in Solid Dispersion Formulation.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Multi-scale Modeling of Cellulosic Polymers for Optimal Drug Delivery Properties in Solid Dispersion Formulation./
作者:
Huang, Wenjun.
面頁冊數:
1 online resource (129 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Contained By:
Dissertation Abstracts International79-04B(E).
標題:
Chemical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355365610
Multi-scale Modeling of Cellulosic Polymers for Optimal Drug Delivery Properties in Solid Dispersion Formulation.
Huang, Wenjun.
Multi-scale Modeling of Cellulosic Polymers for Optimal Drug Delivery Properties in Solid Dispersion Formulation.
- 1 online resource (129 pages)
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Solid dispersion formulation is a promising method to maintain in vivo drug solubility and to improve drug efficacy. However, the exact drug stabilization and release mechanisms of the solid dispersion formulation are unclear. In this doctoral work, we present a multi-scale modeling approach to study the solvation behavior of cellulosic polymers and their interactions with the model drug phenytoin. We compare a number of atomistic force fields and find they give similar predictions for the stiffness of the cellulose chains. We then develop systematic coarse-grained (CG) force fields for two cellulosic polymers, namely methylcellulose and hydroxylpropyl methylcellulose acetate succinate (HPMCAS), based on the radial distribution functions obtained from atomistic simulations. We use the methylcellulose CG model to simulate the self-assembly of multiple 1000 monomers long polymer chains, and find that they spontaneously form ring or tubular structures with outer diameter of 14nm and void fraction of 26%. These structures appear to be precursors to the methylcellulose fibrils, whose diameter and structure are in good agreement with both theoretical and experimental results, and thus shine light on the methylcellulose gelation mechanism. We also present a simplified continuum analytical model to predict a phase map of the collapse conformations of a single self-attractive semiflexible polymer chain in solution into either folded or ring structures depending on the chains bending energy and self-interaction energy. The predicted phase map is in good qualitative agreement with simulation results for these collapsed structures. We use the HPACAS CG model to study the intermolecular interaction modes between 9 functional groups on HPMCAS and model drug phenytoin. We adopt two criteria to quantify the effectiveness of the polymeric excipients, namely 1) the ability to inhibit drug aggregation and 2) the ability to slow down drug release. We find the size of the functional group is more responsible for the former, while the intermolecular interaction strength is more responsible for the later. Therefore, hydroxypropyl acetyl group, which has both bulky size and strong interaction strength, is the most effective functional group, followed by hydroxypropyl and acetyl group, in good agreement with the results from experimental dissolution tests. In addition, we provide continuum models and predict that the drug release time from a typical solid dispersion particle with 2microm diameter ranges from several seconds to less than 10 minutes depending on the functional group. The systematic coarse-graining approach offer molecular level insights that aid the design of high performance polymeric excipients, and can be extended to cellulosic polymers with novel functional groups and additional drug candidates of interest. Thus, our multi-scale modeling approach is of great interest to the pharmaceutical and material design fields.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355365610Subjects--Topical Terms:
555952
Chemical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Multi-scale Modeling of Cellulosic Polymers for Optimal Drug Delivery Properties in Solid Dispersion Formulation.
LDR
:04272ntm a2200337Ki 4500
001
910604
005
20180517123958.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355365610
035
$a
(MiAaPQ)AAI10670307
035
$a
(MiAaPQ)umichrackham:000777
035
$a
AAI10670307
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Huang, Wenjun.
$3
1181976
245
1 0
$a
Multi-scale Modeling of Cellulosic Polymers for Optimal Drug Delivery Properties in Solid Dispersion Formulation.
264
0
$c
2017
300
$a
1 online resource (129 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
500
$a
Adviser: Ronald G. Larson.
502
$a
Thesis (Ph.D.)
$c
University of Michigan
$d
2017.
504
$a
Includes bibliographical references
520
$a
Solid dispersion formulation is a promising method to maintain in vivo drug solubility and to improve drug efficacy. However, the exact drug stabilization and release mechanisms of the solid dispersion formulation are unclear. In this doctoral work, we present a multi-scale modeling approach to study the solvation behavior of cellulosic polymers and their interactions with the model drug phenytoin. We compare a number of atomistic force fields and find they give similar predictions for the stiffness of the cellulose chains. We then develop systematic coarse-grained (CG) force fields for two cellulosic polymers, namely methylcellulose and hydroxylpropyl methylcellulose acetate succinate (HPMCAS), based on the radial distribution functions obtained from atomistic simulations. We use the methylcellulose CG model to simulate the self-assembly of multiple 1000 monomers long polymer chains, and find that they spontaneously form ring or tubular structures with outer diameter of 14nm and void fraction of 26%. These structures appear to be precursors to the methylcellulose fibrils, whose diameter and structure are in good agreement with both theoretical and experimental results, and thus shine light on the methylcellulose gelation mechanism. We also present a simplified continuum analytical model to predict a phase map of the collapse conformations of a single self-attractive semiflexible polymer chain in solution into either folded or ring structures depending on the chains bending energy and self-interaction energy. The predicted phase map is in good qualitative agreement with simulation results for these collapsed structures. We use the HPACAS CG model to study the intermolecular interaction modes between 9 functional groups on HPMCAS and model drug phenytoin. We adopt two criteria to quantify the effectiveness of the polymeric excipients, namely 1) the ability to inhibit drug aggregation and 2) the ability to slow down drug release. We find the size of the functional group is more responsible for the former, while the intermolecular interaction strength is more responsible for the later. Therefore, hydroxypropyl acetyl group, which has both bulky size and strong interaction strength, is the most effective functional group, followed by hydroxypropyl and acetyl group, in good agreement with the results from experimental dissolution tests. In addition, we provide continuum models and predict that the drug release time from a typical solid dispersion particle with 2microm diameter ranges from several seconds to less than 10 minutes depending on the functional group. The systematic coarse-graining approach offer molecular level insights that aid the design of high performance polymeric excipients, and can be extended to cellulosic polymers with novel functional groups and additional drug candidates of interest. Thus, our multi-scale modeling approach is of great interest to the pharmaceutical and material design fields.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Chemical engineering.
$3
555952
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0542
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Michigan.
$b
Chemical Engineering.
$3
1181977
773
0
$t
Dissertation Abstracts International
$g
79-04B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10670307
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入