語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Optoelectronic Properties of Nan...
~
The University of Chicago.
The Optoelectronic Properties of Nanoparticles from First Principles Calculations.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
The Optoelectronic Properties of Nanoparticles from First Principles Calculations./
作者:
Brawand, Nicholas Peter.
面頁冊數:
1 online resource (186 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Contained By:
Dissertation Abstracts International78-12B(E).
標題:
Physics. -
電子資源:
click for full text (PQDT)
ISBN:
9780355077377
The Optoelectronic Properties of Nanoparticles from First Principles Calculations.
Brawand, Nicholas Peter.
The Optoelectronic Properties of Nanoparticles from First Principles Calculations.
- 1 online resource (186 pages)
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
The tunable optoelectronic properties of nanoparticles through the modification of their size, shape, and surface chemistry, make them promising platforms for numerous applications, including electronic and solar conversion devices. However, the rational design and optimization of nanostructured materials remain open challenges, e.g. due to difficulties in controlling and reproducing synthetic processes and in precise atomic-scale characterization. Hence, the need for accurate theoretical predictions, which can complement and help interpret experiments and provide insight into the underlying physical properties of nanostructured materials. This dissertation focuses on the development and application of first principles calculations to predict the optoelectronic properties of nanoparticles. Novel methods based on density functional theory are developed, implemented, and applied to predict both optical and charge transport properties.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355077377Subjects--Topical Terms:
564049
Physics.
Index Terms--Genre/Form:
554714
Electronic books.
The Optoelectronic Properties of Nanoparticles from First Principles Calculations.
LDR
:04806ntm a2200397Ki 4500
001
910911
005
20180517120324.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355077377
035
$a
(MiAaPQ)AAI10268725
035
$a
(MiAaPQ)uchicago:13723
035
$a
AAI10268725
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Brawand, Nicholas Peter.
$3
1182429
245
1 4
$a
The Optoelectronic Properties of Nanoparticles from First Principles Calculations.
264
0
$c
2017
300
$a
1 online resource (186 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
500
$a
Adviser: Giulia Galli.
502
$a
Thesis (Ph.D.)
$c
The University of Chicago
$d
2017.
504
$a
Includes bibliographical references
520
$a
The tunable optoelectronic properties of nanoparticles through the modification of their size, shape, and surface chemistry, make them promising platforms for numerous applications, including electronic and solar conversion devices. However, the rational design and optimization of nanostructured materials remain open challenges, e.g. due to difficulties in controlling and reproducing synthetic processes and in precise atomic-scale characterization. Hence, the need for accurate theoretical predictions, which can complement and help interpret experiments and provide insight into the underlying physical properties of nanostructured materials. This dissertation focuses on the development and application of first principles calculations to predict the optoelectronic properties of nanoparticles. Novel methods based on density functional theory are developed, implemented, and applied to predict both optical and charge transport properties.
520
$a
In particular, the generalization of dielectric dependent hybrid functionals to finite systems is introduced and shown to yield highly accurate electronic structure properties of molecules and nanoparticles, including photoemission and absorption properties. In addition, an implementation of constrained density functional theory is discussed, for the calculation of hopping transport in nanoparticle systems. The implementation was verified against literature results and compared against other methods used to compute transport properties, showing that some methods used in the literature give unphysical results for thermally disordered systems. Furthermore, the constrained density functional theory implementation was coupled to the self-consistent image charge method, making it possible to include image charge effects self-consistently when predicting charge transport properties of nanoparticles near interfaces.
520
$a
The methods developed in this dissertation were then applied to study the optoelectronic and transport properties of specific systems, in particular, silicon and lead chalcogenide nanoparticles. In the case of Si, blinking in oxidized Si nanoparticles was addressed. Si dangling bonds at the surface were found to introduce defect states which, depending on their charge and local stress conditions, may give rise to ON and OFF states responsible for exponential blinking statistics. We also investigated, engineering of band edge positions of nanoparticles through post-synthetic surface chemistry modification, with a focus on lead chalcogenides. In collaboration with experiment, we demonstrated how band edge positions of lead sulfide nanoparticles can be tuned by over 2.0 eV. We established a clear relationship between ligand dipole moments and nanoparticle band edge shifts which can be used to engineer nanoparticles for optoelectronic applications.
520
$a
Calculations of transport properties focused on charge transfer in silicon and lead chalcogenide nanoparticles. Si nanoparticles with deep defects and shallow impurities were investigated, showing that shallow defects may be more detrimental to charge transport than previously assumed. In the case of lead chalcogenide nanoparticles, hydrogen was found to form complexes with defects which can be used to remove potentially detrimental charge traps in nanoparticle solids. The methods and results presented in this dissertation are expected to help guide engineering of nanoparticles for future device applications.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Physics.
$3
564049
650
4
$a
Chemistry.
$3
593913
650
4
$a
Materials science.
$3
557839
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0605
690
$a
0485
690
$a
0794
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Chicago.
$b
Molecular Engineering.
$3
1182430
773
0
$t
Dissertation Abstracts International
$g
78-12B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10268725
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入