語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Model Development and Process Analys...
~
Indiana State University.
Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing./
作者:
Hilburn, Monty D.
面頁冊數:
1 online resource (96 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-10(E), Section: B.
Contained By:
Dissertation Abstracts International78-10B(E).
標題:
Aerospace engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369840209
Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing.
Hilburn, Monty D.
Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing.
- 1 online resource (96 pages)
Source: Dissertation Abstracts International, Volume: 78-10(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These factors are critical inputs into the support staffing resources calculation used by the lean planning model. Null hypothesis related to functional support staff resources was rejected for most functional groups, indicating that the baseline site plan inadequately provided for cross-functional staff involvement to support the lean transformation plan. Null hypotheses related to total lean transformation staffing could not be rejected, indicating that while total staffing plans were not significantly different than plans developed during the on-site review and through the use of the lean planning model, the allocation of staffing among various functional groups such as engineering, production, and materials planning was an issue. The on-site review process and simple lean transformation plan developed was determined to be useful in identifying short-comings in lean transformation planning within aerospace manufacturing and assembly sites. It was concluded that the differences uncovered were likely contributing factors affecting the effectiveness of aerospace manufacturing sites' implementation of lean cellular manufacturing.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369840209Subjects--Topical Terms:
686400
Aerospace engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing.
LDR
:04508ntm a2200361Ki 4500
001
911189
005
20180529081858.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369840209
035
$a
(MiAaPQ)AAI10261559
035
$a
(MiAaPQ)indstate:10750
035
$a
AAI10261559
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Hilburn, Monty D.
$3
1182867
245
1 0
$a
Model Development and Process Analysis for Lean Cellular Design Planning in Aerospace Assembly and Manufacturing.
264
0
$c
2017
300
$a
1 online resource (96 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-10(E), Section: B.
500
$a
Advisers: Charles E. Coddington; J. Barry DuVall.
502
$a
Thesis (Ph.D.)
$c
Indiana State University
$d
2017.
504
$a
Includes bibliographical references
520
$a
Successful lean manufacturing and cellular manufacturing execution relies upon a foundation of leadership commitment and strategic planning built upon solid data and robust analysis. The problem for this study was to create and employ a simple lean transformation planning model and review process that could be used to identify functional support staff resources required to plan and execute lean manufacturing cells within aerospace assembly and manufacturing sites. The lean planning model was developed using available literature for lean manufacturing kaizen best practices and validated through a Delphi panel of lean experts. The resulting model and a standardized review process were used to assess the state of lean transformation planning at five sites of an international aerospace manufacturing and assembly company. The results of the three day, on-site review were compared with baseline plans collected from each of the five sites to determine if there analyzed, with focus on three critical areas of lean planning: the number and type of manufacturing cells identified, the number, type, and duration of planned lean and continuous kaizen events, and the quantity and type of functional staffing resources planned to support the kaizen schedule. Summarized data of the baseline and on-site reviews was analyzed with descriptive statistics. ANOVAs and paired-t tests at 95% significance level were conducted on the means of data sets to determine if null hypotheses related to cell, kaizen event, and support resources could be rejected. The results of the research found significant differences between lean transformation plans developed by site leadership and plans developed utilizing the structured, on-site review process and lean transformation planning model. The null hypothesis that there was no difference between the means of pre-review and on-site cell counts was rejected, as was the null hypothesis that there was no significant difference in kaizen event plans. These factors are critical inputs into the support staffing resources calculation used by the lean planning model. Null hypothesis related to functional support staff resources was rejected for most functional groups, indicating that the baseline site plan inadequately provided for cross-functional staff involvement to support the lean transformation plan. Null hypotheses related to total lean transformation staffing could not be rejected, indicating that while total staffing plans were not significantly different than plans developed during the on-site review and through the use of the lean planning model, the allocation of staffing among various functional groups such as engineering, production, and materials planning was an issue. The on-site review process and simple lean transformation plan developed was determined to be useful in identifying short-comings in lean transformation planning within aerospace manufacturing and assembly sites. It was concluded that the differences uncovered were likely contributing factors affecting the effectiveness of aerospace manufacturing sites' implementation of lean cellular manufacturing.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Aerospace engineering.
$3
686400
650
4
$a
Industrial engineering.
$3
679492
650
4
$a
Management.
$3
558618
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0538
690
$a
0546
690
$a
0454
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Indiana State University.
$b
Technology Management.
$3
1182868
773
0
$t
Dissertation Abstracts International
$g
78-10B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10261559
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入