語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Methods for Statistical Association ...
~
The University of North Carolina at Chapel Hill.
Methods for Statistical Association Mining by Variable-to-Set Affinity Testing.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Methods for Statistical Association Mining by Variable-to-Set Affinity Testing./
作者:
Bodwin, Kelly Nicole.
面頁冊數:
1 online resource (126 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Contained By:
Dissertation Abstracts International78-11B(E).
標題:
Statistics. -
電子資源:
click for full text (PQDT)
ISBN:
9781369875713
Methods for Statistical Association Mining by Variable-to-Set Affinity Testing.
Bodwin, Kelly Nicole.
Methods for Statistical Association Mining by Variable-to-Set Affinity Testing.
- 1 online resource (126 pages)
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Statistical data mining refers to methods for identifying and validating interesting patterns from an overabundance of data. Data mining tasks in which the objective involves pairwise relationships between variables are known as association mining. In general, features sought by association mining methods are sets of variables, often small subsets of a larger collection, that are more associated internally than externally. Methods vary in both the measure of association that is studied and the algorithm by which associated sets are identified. This dissertation discusses provide a generalized framework for association mining called Variable-to-Set Affinity Testing (VSAT). Unlike conventional techniques for clustering or community detection, which usually maximize a score from a dissimilarity or adjacency matrix, the VSAT approach is an adaptive procedure grounded in statistical hypothesis testing principles. The framework is adaptable to a broad class of measurements for variable relationships, and is equipped with theoretical guarantees of error control.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369875713Subjects--Topical Terms:
556824
Statistics.
Index Terms--Genre/Form:
554714
Electronic books.
Methods for Statistical Association Mining by Variable-to-Set Affinity Testing.
LDR
:03380ntm a2200349Ki 4500
001
911201
005
20180529081859.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369875713
035
$a
(MiAaPQ)AAI10269184
035
$a
(MiAaPQ)unc:17074
035
$a
AAI10269184
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Bodwin, Kelly Nicole.
$3
1182886
245
1 0
$a
Methods for Statistical Association Mining by Variable-to-Set Affinity Testing.
264
0
$c
2017
300
$a
1 online resource (126 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-11(E), Section: B.
500
$a
Advisers: Andrew B. Nobel; Kai Zhang.
502
$a
Thesis (Ph.D.)
$c
The University of North Carolina at Chapel Hill
$d
2017.
504
$a
Includes bibliographical references
520
$a
Statistical data mining refers to methods for identifying and validating interesting patterns from an overabundance of data. Data mining tasks in which the objective involves pairwise relationships between variables are known as association mining. In general, features sought by association mining methods are sets of variables, often small subsets of a larger collection, that are more associated internally than externally. Methods vary in both the measure of association that is studied and the algorithm by which associated sets are identified. This dissertation discusses provide a generalized framework for association mining called Variable-to-Set Affinity Testing (VSAT). Unlike conventional techniques for clustering or community detection, which usually maximize a score from a dissimilarity or adjacency matrix, the VSAT approach is an adaptive procedure grounded in statistical hypothesis testing principles. The framework is adaptable to a broad class of measurements for variable relationships, and is equipped with theoretical guarantees of error control.
520
$a
This dissertation also presents in detail two new association mining methods built in the VSAT framework. The first, Differential Correlation Mining (DCM), identifies variable sets that have higher average pairwise correlation in one sample condition than in another. Such artifacts are of scientific interest in many fields, including statistical genetics and neuroscience. Differential Correlation Mining is applied to high-dimensional data sets in these two fields. The second method, Coherent Set Mining (CSM), is a novel approach to association mining in binary data. Dichotomous observations are assumed to derive from a latent variable of interest via thresholding. The Coherent Set Mining method identifies variable sets that are strongly associated in the latent measure, despite distortions in the association structure of the observed data due to the thresholding process. Coherent Set Mining is applied to problems in text mining, statistical genetics, and product recommendation.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Statistics.
$3
556824
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0463
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of North Carolina at Chapel Hill.
$b
Statistics and Operations Research.
$3
1179067
773
0
$t
Dissertation Abstracts International
$g
78-11B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10269184
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入