語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Creep-Fatigue Damage Investigation a...
~
ProQuest Information and Learning Co.
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures./
作者:
Tahir, Fraaz.
面頁冊數:
1 online resource (111 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Contained By:
Dissertation Abstracts International78-09B(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369746877
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures.
Tahir, Fraaz.
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures.
- 1 online resource (111 pages)
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369746877Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures.
LDR
:03962ntm a2200361Ki 4500
001
911208
005
20180529081859.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369746877
035
$a
(MiAaPQ)AAI10272572
035
$a
(MiAaPQ)asu:16820
035
$a
AAI10272572
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Tahir, Fraaz.
$3
1182895
245
1 0
$a
Creep-Fatigue Damage Investigation and Modeling of Alloy 617 at High Temperatures.
264
0
$c
2017
300
$a
1 online resource (111 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
500
$a
Adviser: Yongming Liu.
502
$a
Thesis (Ph.D.)
$c
Arizona State University
$d
2017.
504
$a
Includes bibliographical references
520
$a
The Very High Temperature Reactor (VHTR) is one of six conceptual designs proposed for Generation IV nuclear reactors. Alloy 617, a solid solution strengthened Ni-base superalloy, is currently the primary candidate material for the tubing of the Intermediate Heat Exchanger (IHX) in the VHTR design. Steady-state operation of the nuclear power plant at elevated temperatures leads to creep deformation, whereas loading transients including startup and shutdown generate fatigue. A detailed understanding of the creep-fatigue interaction in Alloy 617 is necessary before it can be considered as a material for nuclear construction in ASME Boiler and Pressure Vessel Code. Current design codes for components undergoing creep-fatigue interaction at elevated temperatures require creep-fatigue testing data covering the entire range from fatigue-dominant to creep-dominant loading. Classical strain-controlled tests, which produce stress relaxation during the hold period, show a saturation in cycle life with increasing hold periods due to the rapid stress-relaxation of Alloy 617 at high temperatures. Therefore, applying longer hold time in these tests cannot generate creep-dominated failure. In this study, uniaxial isothermal creep-fatigue tests with non-traditional loading waveforms were designed and performed at 850 and 950°C, with an objective of generating test data in the creep-dominant regime. The new loading waveforms are hybrid strain-controlled and force-controlled testing which avoid stress relaxation during the creep hold. The experimental data showed varying proportions of creep and fatigue damage, and provided evidence for the inadequacy of the widely-used time fraction rule for estimating creep damage under creep-fatigue conditions. Micro-scale damage features in failed test specimens, such as fatigue cracks and creep voids, were quantified using a Scanning Electron Microscope (SEM) to find a correlation between creep and fatigue damage. Quantitative statistical imaging analysis showed that the microstructural damage features (cracks and voids) are correlated with a new mechanical driving force parameter. The results from this image-based damage analysis were used to develop a phenomenological life-prediction methodology called the effective time fraction approach. Finally, the constitutive creep-fatigue response of the material at 950°C was modeled using a unified viscoplastic model coupled with a damage accumulation model. The simulation results were used to validate an energy-based constitutive life-prediction model, as a mechanistic model for potential component and structure level creep-fatigue analysis.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Materials science.
$3
557839
650
4
$a
Engineering.
$3
561152
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0794
690
$a
0537
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Arizona State University.
$b
Mechanical Engineering.
$3
845641
773
0
$t
Dissertation Abstracts International
$g
78-09B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10272572
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入