語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The effects of wing flexibility on t...
~
ProQuest Information and Learning Co.
The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles./
作者:
Bluman, James Edward.
面頁冊數:
1 online resource (202 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Contained By:
Dissertation Abstracts International78-09B(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9781369719338
The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles.
Bluman, James Edward.
The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles.
- 1 online resource (202 pages)
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes -- Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369719338Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles.
LDR
:03672ntm a2200361Ki 4500
001
911210
005
20180529081859.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369719338
035
$a
(MiAaPQ)AAI10273319
035
$a
(MiAaPQ)uah:10368
035
$a
AAI10273319
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Bluman, James Edward.
$3
1182898
245
1 4
$a
The effects of wing flexibility on the flight performance and stability of flapping wing micro air vehicles.
264
0
$c
2017
300
$a
1 online resource (202 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-09(E), Section: B.
500
$a
Adviser: Chang-kwon Kang.
502
$a
Thesis (Ph.D.)
$c
The University of Alabama in Huntsville
$d
2017.
504
$a
Includes bibliographical references
520
$a
Insect wings are flexible. However, the influence of wing flexibility on the flight dynamics of insects and flapping wing micro air vehicles is unknown. Most studies in the literature consider rigid wings and conclude that the hover equilibrium is unstable. This dissertation shows that a flapping wing flyer with flexible wings exhibits stable natural modes of the open loop system in hover, never reported before. The free-flight insect flight dynamics is modeled for both flexible and rigid wings. Wing mass and inertia are included in the nonlinear equations of motion. The flapping wing aerodynamics are modeled using a quasi-steady model, a well-validated two dimensional Navier Stokes model, and a coupled, two dimensional Navier Stokes -- Euler Bernoulli beam model that accurately models the fluid-structure interaction of flexible wings. Hover equilibrium is systematically and efficiently determined with a coupled quasi-steady and Navier-Stokes equation trimmer. The power and stability are reported at hover while parametrically varying the pitch axis location for rigid wings and the structural stiffness for flexible wings. The results indicate that the rigid wings possess an unstable oscillatory mode mainly due to their pitch sensitivity to horizontal velocity perturbations. The flexible wings stabilize this mode primarily by adjusting their wing shape in the presence of perturbations. The wing's response to perturbations generates significantly more horizontal velocity damping and pitch rate damping than in rigid wings. Furthermore, the flexible wings experience substantially less wing wake interaction, which, for rigid wings, is destabilizing. The power required to hover a fruit fly with actively rotating rigid wings varies between 16.9 and 34.2 W/kg. The optimal power occurs when the pitch axis is located at 30% chord, similar to some biological observations. Flexible wings require 23.1 to 38.5 W/kg. However, flexible wings exhibit more stable system dynamics and allow for simpler and lighter designs since they do not require pitch actuation mechanisms. This study is the first to evaluate the impact of wing flexibility on the hovering stability of flapping flyers, which can explain the ranges of flexibility seen in insects and can inform designs of synthetic flapping wing robots.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Aerospace engineering.
$3
686400
650
4
$a
Robotics.
$3
561941
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0538
690
$a
0771
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Alabama in Huntsville.
$b
Mechanical and Aerospace Engineering.
$3
1182899
773
0
$t
Dissertation Abstracts International
$g
78-09B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10273319
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入