語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-Resolution Modeling and Simula...
~
University of Minnesota.
Multi-Resolution Modeling and Simulation of Marine Hydrokinetic Turbine Arrays at Site Scale.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Multi-Resolution Modeling and Simulation of Marine Hydrokinetic Turbine Arrays at Site Scale./
作者:
Chawdhary, Saurabh.
面頁冊數:
1 online resource (168 pages)
附註:
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Contained By:
Dissertation Abstracts International78-12B(E).
標題:
Mechanical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355082616
Multi-Resolution Modeling and Simulation of Marine Hydrokinetic Turbine Arrays at Site Scale.
Chawdhary, Saurabh.
Multi-Resolution Modeling and Simulation of Marine Hydrokinetic Turbine Arrays at Site Scale.
- 1 online resource (168 pages)
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Marine and hydro-kinetic (MHK) energy hold promise to become significant contributor towards sustainable energy generation. Despite the promise, commercialization of MHK energy technologies is still in the development stage. While many simplified models for MHK site resource-assessment exist, more research is needed to enable efficient energy extraction from identified MHK sites. A marine energy company named Verdant Power Inc. was granted first federal license to install up to 30 axial hydrokinetic turbines in the East River in New York City under what came to be known as Roosevelt Island Tidal Energy (RITE) project. Therefore, in this study we investigate issues of relevance to post-site-identification stage for a real-life tidal energy project, the RITE project, using high-fidelity numerical simulations.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355082616Subjects--Topical Terms:
557493
Mechanical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Multi-Resolution Modeling and Simulation of Marine Hydrokinetic Turbine Arrays at Site Scale.
LDR
:04300ntm a2200373Ki 4500
001
911217
005
20180529081859.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355082616
035
$a
(MiAaPQ)AAI10274956
035
$a
(MiAaPQ)umn:18030
035
$a
AAI10274956
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Chawdhary, Saurabh.
$3
1182906
245
1 0
$a
Multi-Resolution Modeling and Simulation of Marine Hydrokinetic Turbine Arrays at Site Scale.
264
0
$c
2017
300
$a
1 online resource (168 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 78-12(E), Section: B.
500
$a
Advisers: Fotis Sotiropoulos; Lian Shen.
502
$a
Thesis (Ph.D.)
$c
University of Minnesota
$d
2017.
504
$a
Includes bibliographical references
520
$a
Marine and hydro-kinetic (MHK) energy hold promise to become significant contributor towards sustainable energy generation. Despite the promise, commercialization of MHK energy technologies is still in the development stage. While many simplified models for MHK site resource-assessment exist, more research is needed to enable efficient energy extraction from identified MHK sites. A marine energy company named Verdant Power Inc. was granted first federal license to install up to 30 axial hydrokinetic turbines in the East River in New York City under what came to be known as Roosevelt Island Tidal Energy (RITE) project. Therefore, in this study we investigate issues of relevance to post-site-identification stage for a real-life tidal energy project, the RITE project, using high-fidelity numerical simulations.
520
$a
An effective way to develop arrays of hydrokinetic turbines in river and tidal channels is to arrange them in TriFrame configurations where three turbines are mounted together at the apexes of a triangular frame. The TriFrames serve as the building block for rapidly deploying multi-turbine arrays. The wake structure of a TriFrame of three model turbines is investigated. We employ large-eddy simulation (LES) with the curvilinear immersed boundary method (CURVIB) for fully resolving the turbine geometry details to simulate turbine-turbine wake interactions in the TriFrame configuration. First, the computed results are compared with experiments in terms of mean flow and turbulence characteristics with overall good agreement with bed-flume experiments. The flow-fields are then analyzed to elucidate the mechanisms of turbine interactions and wake evolution in the TriFrame configuration. We found that the wake of the upstream TriFrame turbine exhibits unique characteristics indicating presence of the Venturi effect as the wake encounters the two downstream turbines. We finally compare the wakes of the TriFrame turbines with that of an isolated single turbine wake to further illustrate how the TriFrame configuration affects the wake characteristics and power production in an array of TriFrames.
520
$a
Lastly, we propose a large eddy simulation (LES)-based framework to investigate the site-specific flow dynamics past MHK arrays in a real-life marine environment. To this end, the new generation unstructured Cartesian flow solver, coupled with a sharp interface immersed boundary method for 3D incompressible flows, is used. Optimized data-structures and efficient algorithms were developed to enable faster simulation on high-resolution grids. Multi-resolution simulations on locally refined grids are then employed to model the flow in a section of the East River with detailed river bathymetry and inset turbines at field scale. The results are analyzed in terms of the wake recovery and overall wake dynamics in the array. Comparison with the baseline flow in the East River reveal the effects of tidal array installation.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Mechanical engineering.
$3
557493
650
4
$a
Engineering.
$3
561152
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0548
690
$a
0537
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Minnesota.
$b
Mechanical Engineering.
$3
845514
773
0
$t
Dissertation Abstracts International
$g
78-12B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10274956
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入