語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Innovative and conventional approach...
~
Wissink, Gregory Karl.
Innovative and conventional approaches to detrital zircon provenance analysis : = looking to the past, present, and future.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Innovative and conventional approaches to detrital zircon provenance analysis :/
其他題名:
looking to the past, present, and future.
作者:
Wissink, Gregory Karl.
面頁冊數:
1 online resource (266 pages)
附註:
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Contained By:
Dissertation Abstracts International77-12B(E).
標題:
Geology. -
電子資源:
click for full text (PQDT)
ISBN:
9781339978710
Innovative and conventional approaches to detrital zircon provenance analysis : = looking to the past, present, and future.
Wissink, Gregory Karl.
Innovative and conventional approaches to detrital zircon provenance analysis :
looking to the past, present, and future. - 1 online resource (266 pages)
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
This item is not available from ProQuest Dissertations & Theses.
The sedimentary basins between the Yangtze River and Red River have long been used to argue for a Mississippi River-scale paleo-drainage. We examine the U/Pb zircon ages of Cenozoic deposits ranging from Eocene to Pliocene age from basins surrounding the first bend of the Yangtze River and upper reaches of the Red River. We combine this data with a comprehensive suite of zircon grain-ages from contemporaneous deposits, modern fluvial sediments, and bedrock source units from previously published literature. Using the new technique developed here, of combining age spectra deconvolution and age component interpolation maps, it becomes clear that Cenozoic deposits of the Southeastern margin of the Tibetan Plateau do not share provenance with offshore sediments associated with the Paleo Red River in the Yinggehai Song-Hong Basin. This, coupled with detailed stratigraphic measurements and interpretations, as well as paleoflow measurements strongly suggests that at least since the Eocene, there was no connectivity between the Yangtze and Red Rivers.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781339978710Subjects--Topical Terms:
670379
Geology.
Index Terms--Genre/Form:
554714
Electronic books.
Innovative and conventional approaches to detrital zircon provenance analysis : = looking to the past, present, and future.
LDR
:05387ntm a2200397Ki 4500
001
911493
005
20180529094434.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781339978710
035
$a
(MiAaPQ)AAI10142587
035
$a
(MiAaPQ)syr:11390
035
$a
AAI10142587
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
Wissink, Gregory Karl.
$3
1183351
245
1 0
$a
Innovative and conventional approaches to detrital zircon provenance analysis :
$b
looking to the past, present, and future.
264
0
$c
2016
300
$a
1 online resource (266 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 77-12(E), Section: B.
500
$a
Adviser: Gregory D. Hoke.
502
$a
Thesis (Ph.D.)
$c
Syracuse University
$d
2016.
504
$a
Includes bibliographical references
506
$a
This item is not available from ProQuest Dissertations & Theses.
520
$a
The sedimentary basins between the Yangtze River and Red River have long been used to argue for a Mississippi River-scale paleo-drainage. We examine the U/Pb zircon ages of Cenozoic deposits ranging from Eocene to Pliocene age from basins surrounding the first bend of the Yangtze River and upper reaches of the Red River. We combine this data with a comprehensive suite of zircon grain-ages from contemporaneous deposits, modern fluvial sediments, and bedrock source units from previously published literature. Using the new technique developed here, of combining age spectra deconvolution and age component interpolation maps, it becomes clear that Cenozoic deposits of the Southeastern margin of the Tibetan Plateau do not share provenance with offshore sediments associated with the Paleo Red River in the Yinggehai Song-Hong Basin. This, coupled with detailed stratigraphic measurements and interpretations, as well as paleoflow measurements strongly suggests that at least since the Eocene, there was no connectivity between the Yangtze and Red Rivers.
520
$a
In a modern setting, examination of provenance of fluvial sediments collected throughout a known catchment can provide insight into regional erosional patterns. The modern Yangtze River, the largest river in Eurasia, provides a perfect setting to apply detrital zircon provenance analysis. We use a previously published zircon U/Pb age distribution dataset of fifteen trunk stream samples and ten samples of the largest tributaries feeding the Yangtze. We apply a series of age-distribution analysis techniques to examine both downstream changes in provenance of trunk stream samples as well as identify the key bedrock and tributary sources of sediment to the trunk stream samples throughout the Yangtze's reach. The original work using this dataset argued that increasing anthropogenic influences, primarily agricultural, lead to a greater than expected influence of the Han, Yuan, and Xiang Rivers, whose confluence with the Yangtze occur in the middle-to lower reaches. The quantitative analysis developed here, however, shows a consistent distribution of U/Pb ages for Yangtze River trunk stream sediments is established in the upper reaches of the Yangtze after the first bend and is maintained some 3000km downstream. The signal is most likely derived from the erosion of the geologic terranes of the Songpan Ganze Terrane and the Longmenshan range, which are sourced primarily by the Yalong, Min, and Dadu rivers. These sources of sediment are consistent with known areas of greater stream power due to higher slopes, exhumation rates, and tectonic activity.
520
$a
One technique that has recently been applied to detrital zircon datasets is multidimensional scaling, or MDS. MDS transforms pairwise dissimilarity measurements of sample U/Pb age distributions into Euclidian distances and then some optimal configuration, where greater distances between sample points represents greater dissimilarity between their respective age distributions. While MDS is not new, its application to detrital zircon datasets has never been rigorously tested. We examine several important issues in the application of MDS to detrital zircon research, including how intra-sample variation is represented as well as how dissimilarities are calculated; how random sampling associated with dating a limited number of zircon grain ages can and does affect the resulting MDS configuration; and how MDS differentiation is affected by samples containing either varying degrees of overlapping, shared, or unique age components. In application of MDS to both synthetic and real-world datasets, we illustrate the usefulness of the approach in the interpretation of detrital zircon age data; which suggests that thoughtful application of MDS mapping to detrital zircon data can afford significant advantages in the geologic interpretation of zircon grain ages. (Abstract shortened by ProQuest.).
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Geology.
$3
670379
650
4
$a
Geochemistry.
$3
648291
650
4
$a
Geomorphology.
$3
566098
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0372
690
$a
0996
690
$a
0484
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Syracuse University.
$b
Earth Sciences.
$3
1183352
773
0
$t
Dissertation Abstracts International
$g
77-12B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10142587
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入