語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Novel Design Strategies for Platinum...
~
The University of New Mexico.
Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells./
作者:
He, Wenhan.
面頁冊數:
1 online resource (121 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-01(E), Section: B.
Contained By:
Dissertation Abstracts International79-01B(E).
標題:
Physical chemistry. -
電子資源:
click for full text (PQDT)
ISBN:
9780355156607
Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells.
He, Wenhan.
Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells.
- 1 online resource (121 pages)
Source: Dissertation Abstracts International, Volume: 79-01(E), Section: B.
Thesis (Ph.D.)
Includes bibliographical references
Current state-of-the-art organic solar cells (OSCs) adopt the strategy of using conjugated polymers or small molecules as donors and fullerene derivatives as acceptors in their active layers. Regarding to the donors of interest, the conjugated polymers and small molecules coupled with heavy metals have been less explored compared to their counterparts. Among various transition metal complexes applied, Pt(II) complexes are unique because of their intrinsic square planar geometries and ability to serve as building blocks for conjugated systems. Furthermore, the heavy metal Pt facilitates the formation of triplet excitons with longer life times through spin-orbital coupling which are of benefit for the OSCs application. However, in order to obtain low bandgap polymers, people are intended to use chromophores with long conjugated length, nevertheless such design will inevitably dilute the spin-orbital coupling effect and finally influence the formation of triplet excitons. Furthermore, the majority of Pt-containing conjugated systems reported so far shared a common feature--- they all possessed "dumbbell" shaped structures and were amorphous, leading to poor device performance. In addition, there were few examples reporting the capture of the triplet excitons by the fullerene acceptors in the OSCs since there is a mismatch between the triplet energy state (T1) of the Pt-containing compounds and the LUMO level of fullerene acceptors. As a result, these three intrinsic problems will impede the further development of such a field.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355156607Subjects--Topical Terms:
1148725
Physical chemistry.
Index Terms--Genre/Form:
554714
Electronic books.
Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells.
LDR
:04046ntm a2200349Ki 4500
001
911538
005
20180529094435.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355156607
035
$a
(MiAaPQ)AAI10262525
035
$a
(MiAaPQ)newmex:11710
035
$a
AAI10262525
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
099
$a
TUL
$f
hyy
$c
available through World Wide Web
100
1
$a
He, Wenhan.
$3
1183428
245
1 0
$a
Novel Design Strategies for Platinum-Containing Conjugated Polymers and Small Molecules for Organic Solar Cells.
264
0
$c
2017
300
$a
1 online resource (121 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-01(E), Section: B.
500
$a
Adviser: Yang Qin.
502
$a
Thesis (Ph.D.)
$c
The University of New Mexico
$d
2017.
504
$a
Includes bibliographical references
520
$a
Current state-of-the-art organic solar cells (OSCs) adopt the strategy of using conjugated polymers or small molecules as donors and fullerene derivatives as acceptors in their active layers. Regarding to the donors of interest, the conjugated polymers and small molecules coupled with heavy metals have been less explored compared to their counterparts. Among various transition metal complexes applied, Pt(II) complexes are unique because of their intrinsic square planar geometries and ability to serve as building blocks for conjugated systems. Furthermore, the heavy metal Pt facilitates the formation of triplet excitons with longer life times through spin-orbital coupling which are of benefit for the OSCs application. However, in order to obtain low bandgap polymers, people are intended to use chromophores with long conjugated length, nevertheless such design will inevitably dilute the spin-orbital coupling effect and finally influence the formation of triplet excitons. Furthermore, the majority of Pt-containing conjugated systems reported so far shared a common feature--- they all possessed "dumbbell" shaped structures and were amorphous, leading to poor device performance. In addition, there were few examples reporting the capture of the triplet excitons by the fullerene acceptors in the OSCs since there is a mismatch between the triplet energy state (T1) of the Pt-containing compounds and the LUMO level of fullerene acceptors. As a result, these three intrinsic problems will impede the further development of such a field.
520
$a
In order to solve these problems, I originally designed and synthesized three novel compounds with unique proprieties named as Bodipy-Pt, Pt-SM and C60+SDS-. Specifically, Bodipy has the advantages of compact size, easy to synthesis and high fluorescence quantum yield which can effectively solve the problem of long conjugated length. While in terms of second problem, the new Pt-SM possessed a "roller-wheel" structural design with increased crystallinity through slip-stack packing; the solar cell efficiency of this compound out-performed all existing Pt-containing materials in organic solar cells. I have further studied the photophysical behavior of the molecule through time-resolved transient absorption spectroscopy as well as DFT calculation. Finally, because of its ionic nature, the LUMO level of C60+SDS- is lower than that of PCBM which serves as a common fullerene acceptor applied in the organic solar cell. Above all, through the measurement of time-resolved transient absorption, I have confirmed the C60+SDS - can capture the triplet exciton of Pt-SM through dynamic quenching since the life-time of triplet exciton has decreased after adding C60 +SDS- solution.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Physical chemistry.
$3
1148725
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0494
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of New Mexico.
$b
Chemistry and Chemical Biology.
$3
1183429
773
0
$t
Dissertation Abstracts International
$g
79-01B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10262525
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入