語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Deep collective inference.
~
Moore, John A.
Deep collective inference.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Deep collective inference./
作者:
Moore, John A.
面頁冊數:
1 online resource (54 pages)
附註:
Source: Masters Abstracts International, Volume: 56-03.
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9781369643121
Deep collective inference.
Moore, John A.
Deep collective inference.
- 1 online resource (54 pages)
Source: Masters Abstracts International, Volume: 56-03.
Thesis (M.S.)--Purdue University, 2016.
Includes bibliographical references
Collective inference is widely used to improve classification in network datasets.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369643121Subjects--Topical Terms:
573171
Computer science.
Index Terms--Genre/Form:
554714
Electronic books.
Deep collective inference.
LDR
:02670ntm a2200505K 4500
001
915272
005
20180727125211.5
006
m o u
007
cr mn||||a|a||
008
190606s2016 xx obm 000 0 eng d
020
$a
9781369643121
035
$a
(MiAaPQ)AAI10248759
035
$a
(MiAaPQ)purdue:20934
035
$a
AAI10248759
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
100
1
$a
Moore, John A.
$3
1188580
245
1 0
$a
Deep collective inference.
264
0
$c
2016
300
$a
1 online resource (54 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 56-03.
500
$a
Adviser: Jennifer Neville.
502
$a
Thesis (M.S.)--Purdue University, 2016.
504
$a
Includes bibliographical references
520
$a
Collective inference is widely used to improve classification in network datasets.
520
$a
However, despite recent advances in deep learning and the successes of recurrent neural.
520
$a
networks (RNNs), researchers have only just recently begun to study how to apply.
520
$a
RNNs to heterogeneous graph and network datasets. There has been recent work on.
520
$a
using RNNs for unsupervised learning in networks (e.g., graph clustering, node embedding).
520
$a
and for prediction (e.g., link prediction, graph classification), but there has.
520
$a
been little work on using RNNs for node-based relational classification tasks. In this.
520
$a
paper, we provide an end-to-end learning framework using RNNs for collective inference.
520
$a
Our main insight is to transform a node and its set of neighbors into an.
520
$a
unordered sequence (of varying length) and use an LSTM-based RNN to predict the.
520
$a
class label as the output of that sequence. We develop a collective inference method,
520
$a
which we refer to as Deep Collective Inference (DCI), that uses semi-supervised learning.
520
$a
in partially-labeled networks and two label distribution correction mechanisms.
520
$a
for imbalanced classes. We compare to several alternative methods on seven network.
520
$a
datasets. DCI achieves up to a 12% reduction in error compared to the best.
520
$a
alternative and a 25% reduction in error on average over all methods, for all label.
520
$a
proportions.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Purdue University.
$b
Computer Sciences.
$3
1179390
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10248759
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入