語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Electrospinning of conducting polyme...
~
Ecole Polytechnique, Montreal (Canada).
Electrospinning of conducting polymer fibers for stretchable electronics.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Electrospinning of conducting polymer fibers for stretchable electronics./
作者:
Boubee de Gramont, Fanny.
面頁冊數:
1 online resource (109 pages)
附註:
Source: Dissertation Abstracts International, Volume: 76-04C.
標題:
Biomedical engineering. -
電子資源:
click for full text (PQDT)
Electrospinning of conducting polymer fibers for stretchable electronics.
Boubee de Gramont, Fanny.
Electrospinning of conducting polymer fibers for stretchable electronics.
- 1 online resource (109 pages)
Source: Dissertation Abstracts International, Volume: 76-04C.
Thesis (M.A.Sc.)--Ecole Polytechnique, Montreal (Canada), 2017.
Includes bibliographical references
Stretchable electronics is a promising field for biomedical applications. Stretchable devices can be used for various purposes, including wearable electronics (or smart clothes), artificial skin, and more generally for any purpose requiring to have on-skin electronics that conform to the lifestyle of the patient, for example day-by-day biomonitoring. Many strategies have been used so far to produce stretchable electronics, however these can be split between two main categories. In the first one are the materials that stretch due to a specific geometry, while in the second category are the materials that are intrinsically stretchable. Specific shapes such as fibers can thus be used to improve the stretchability of an otherwise poorly-stretchable material, including conductive materials such as metals or conducting and semi-conducting polymers used in organic electronics. However, the practical application of fibers in stretchable electronics requires the use of a technique that can easily yield conductive fibers. For biological applications, organic electronic materials present the advantage over conventional electronic materials to possess a good compatibility with biological systems due to their ability to easily interface with the biological milieu and their mixed ionic / electronic conduction.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
Subjects--Topical Terms:
588770
Biomedical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Electrospinning of conducting polymer fibers for stretchable electronics.
LDR
:07103ntm a2200349K 4500
001
915569
005
20180803124552.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
035
$a
(MiAaPQ)AAI10806442
035
$a
(MiAaPQ)EPMontreal2502
035
$a
AAI10806442
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
100
1
$a
Boubee de Gramont, Fanny.
$3
1188963
245
1 0
$a
Electrospinning of conducting polymer fibers for stretchable electronics.
264
0
$c
2017
300
$a
1 online resource (109 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 76-04C.
500
$a
Advisers: Fabio Cicoira; Gregory De Crescenzo.
502
$a
Thesis (M.A.Sc.)--Ecole Polytechnique, Montreal (Canada), 2017.
504
$a
Includes bibliographical references
520
$a
Stretchable electronics is a promising field for biomedical applications. Stretchable devices can be used for various purposes, including wearable electronics (or smart clothes), artificial skin, and more generally for any purpose requiring to have on-skin electronics that conform to the lifestyle of the patient, for example day-by-day biomonitoring. Many strategies have been used so far to produce stretchable electronics, however these can be split between two main categories. In the first one are the materials that stretch due to a specific geometry, while in the second category are the materials that are intrinsically stretchable. Specific shapes such as fibers can thus be used to improve the stretchability of an otherwise poorly-stretchable material, including conductive materials such as metals or conducting and semi-conducting polymers used in organic electronics. However, the practical application of fibers in stretchable electronics requires the use of a technique that can easily yield conductive fibers. For biological applications, organic electronic materials present the advantage over conventional electronic materials to possess a good compatibility with biological systems due to their ability to easily interface with the biological milieu and their mixed ionic / electronic conduction.
520
$a
The objective of this research project is to demonstrate the fabrication of such films, made with conductive polymer nanofibers that can still conduct the current even when stretched.
520
$a
Although many methods exist to produce such fibers, electrospinning is one of the easiest ways to directly make non-woven porous nanofiber mats that can conform to the surface of their substrate. By combining electrospinning with vapor phase polymerization, we fabricated conductive nanofibers of poly-(3,4-ethylenedioxythiophene) doped with paratolenesulfonate (tosylate, PEDOT:Tos) directly on polydimethylsiloxane (PDMS), an organosilicon elastomer. Non-woven fiber mats composed of conductive nanofibers with an average diameter of around 700 nm were obtained directly on PDMS. We characterized these fibers to study their electrical behavior when a strain was applied to them. These mats were then stretched while the current flowing inside them was measured, at fixed voltage. This allowed us to demonstrate a stretchability up to 140% of the initial length without major variation of the current flowing in the mats.
520
$a
L'electronique etirable est un domaine prometteur en ce qui concerne les applications au biomedical. En effet, les dispositifs etirables peuvent etre utilises pour remplir diverses fonctions, qui incluent l'electronique portable (ou les vetements intelligents), la peau artificielle, et de facon plus generale l'ensemble des fonctions qui exigent d'avoir de l'electronique placee directement sur la peau apte a se conformer au style de vie du patient, par exemple pour de la surveillance quotidienne des constantes biologiques d'un patient. De nombreuses strategies ont ete mises en place jusqu'a present pour produire de l'electronique etirable, cependant celles-ci peuvent etre grossierement separees en deux categories principales. Dans la premiere se retrouvent toutes les strategies ou les materiaux sont etires grace a l'utilisation d'une geometrie specifique, tandis que la seconde categorie comprend l'ensemble des materiaux qui sont intrinsequement etirables. Ainsi, des formes specifiques comme des fibres peuvent etre utilisees pour ameliorer la capacite a s'etirer d'un materiau autrement peu etirable, ce qui inclut des materiaux conducteurs comme les metaux ou certains polymeres conducteurs et semi-conducteurs utilises en electronique organique. Cependant, la mise en pratique de ces fibres requiere l'utilisation d'une technique apte a aisement generer des fibres conductrices. Pour les applications en biomedical, les materiaux electroniques organiques presentent l'avantage sur l'electronique classique de posseder une bonne compatibilite avec les systemes biologiques du fait de leur capacite a aisement faire l'interface avec le milieu biologique. Ils presentent aussi l'avantage pour ces applications de disposer d'une capacite a conduire a la fois les ions et les electrons. Le but de ce projet de recherche est de demontrer la faisabilite de la fabrication de tels films, faits de nanofibres en polymere conducteur, qui maintiennent leur capacite a conduire le courant meme lorsque ceux-ci sont etires. Bien que de nombreuses methodes existent pour produire de telles fibres, l'electrofilage apparait comme etant l'une des methodes les plus simples pour realiser des couches poreuses et non tissees de nanofibres, couches qui peuvent aisement se conformer a la surface de leur substrat. En combinant l'electrofilage avec une technique appelee la polymerisation en phase vapeur, nous avons fabrique des nanofibres conductrices de poly(3,4-ethylenedioxythiophene) dope avec de l'acide paratoluenesulfonique (tosylate, PEDOT:Tos) directement sur du polydimethylsiloxane (PDMS), un elastomere organique silicone. Cette methode simple a deux etapes nous a permis de produire des nanofibres de poly(3,4-ethylenedioxythiophene) dope avec du tosylate (PEDOT:Tos) sur du PDMS. Des couches fibreuses non tissees composees de nanofibres conductrices possedant un diametre moyen d'un peu moins de 700 nm ont ainsi ete obtenues directement sur le PDMS. Nous avons caracterise ces fibres pour etudier leur comportement electrique lorsqu'une tension etait appliquee a leurs extremites. Ces tapis de fibres ont alors pu etre etires tandis qu'un voltage fixe applique directement dessus forcait l'ecoulement d'un courant a l'interieur des films, courant qui a ete mesure. Cela nous a permis de demontrer que ces films possedaient la capacite de s'etirer jusqu'a 140% de leur longueur initiale sans variation majeure de la quantite de courant s'ecoulant dans les films.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Biomedical engineering.
$3
588770
650
4
$a
Textile research.
$3
1180298
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0541
690
$a
0994
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Ecole Polytechnique, Montreal (Canada).
$3
845478
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10806442
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入