語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Privacy Preserving Information Shari...
~
Tian, Yuan.
Privacy Preserving Information Sharing in Modern and Emerging Platforms.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Privacy Preserving Information Sharing in Modern and Emerging Platforms./
作者:
Tian, Yuan.
面頁冊數:
1 online resource (158 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-09(E), Section: B.
Contained By:
Dissertation Abstracts International79-09B(E).
標題:
Computer engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355967364
Privacy Preserving Information Sharing in Modern and Emerging Platforms.
Tian, Yuan.
Privacy Preserving Information Sharing in Modern and Emerging Platforms.
- 1 online resource (158 pages)
Source: Dissertation Abstracts International, Volume: 79-09(E), Section: B.
Thesis (Ph.D.)--Carnegie Mellon University, 2018.
Includes bibliographical references
Users share a large amount of information with modern platforms such as web platforms and social platforms for various services. However, they face the risk of information leakage because modern platforms still lack proper security policies. Existing security policies, such as permission systems and isolation, can help regulate information sharing. However, these policies have problems, such as coarse granularity, bad usability, and incompleteness, especially when new features are introduced. I investigate the security impacts of new features in web and mobile platforms and find design problems that lead to user information leakage. Based on these analyses, I propose design principles for permission systems that mediate how information should be shared in modern and emerging platforms, such as web and social platforms, to provide functionality with privacy preserved. I aim to design permission systems that only allow least-privilege information access. Specifically, I utilize program analysis and natural language processing to understand how applications use sensitive data and correlate these data with their functionality. With this understanding, I design schemes that ask for user consent about unexpected information access and automatically reduce overprivileged access. I provide guidelines for platform designers to build their permission systems according to respective adversary models and resources. In particular, I implement the new permission system for social platforms and Internet of Things (IoT) platforms that enable least-privilege information sharing. For the social platforms, I incorporate the primitives of Opaque handle, Opaque display, and User-driven access control (OOU) to design a least-privilege, user-friendly, developer-friendly, and feature-rich permission system. According to my study on Facebook, OOU can be applied to remove or replace 81.2% of sensitive permission instances without affecting functionality. For IoT platforms, I present a new authorization framework, SmartAuth, that supports user-centric, semantic-based authorization. SmartAuth automatically collects security-relevant information from an IoT application's description, code, and annotations, and generates an authorization user interface to bridge the gap between the functionalities explained to the user and the operations the application actually performs.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355967364Subjects--Topical Terms:
569006
Computer engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Privacy Preserving Information Sharing in Modern and Emerging Platforms.
LDR
:03609ntm a2200337Ki 4500
001
916617
005
20180927111919.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780355967364
035
$a
(MiAaPQ)AAI10615518
035
$a
(MiAaPQ)cmu:10132
035
$a
AAI10615518
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Tian, Yuan.
$3
1190411
245
1 0
$a
Privacy Preserving Information Sharing in Modern and Emerging Platforms.
264
0
$c
2018
300
$a
1 online resource (158 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-09(E), Section: B.
500
$a
Adviser: Patrick Tague.
502
$a
Thesis (Ph.D.)--Carnegie Mellon University, 2018.
504
$a
Includes bibliographical references
520
$a
Users share a large amount of information with modern platforms such as web platforms and social platforms for various services. However, they face the risk of information leakage because modern platforms still lack proper security policies. Existing security policies, such as permission systems and isolation, can help regulate information sharing. However, these policies have problems, such as coarse granularity, bad usability, and incompleteness, especially when new features are introduced. I investigate the security impacts of new features in web and mobile platforms and find design problems that lead to user information leakage. Based on these analyses, I propose design principles for permission systems that mediate how information should be shared in modern and emerging platforms, such as web and social platforms, to provide functionality with privacy preserved. I aim to design permission systems that only allow least-privilege information access. Specifically, I utilize program analysis and natural language processing to understand how applications use sensitive data and correlate these data with their functionality. With this understanding, I design schemes that ask for user consent about unexpected information access and automatically reduce overprivileged access. I provide guidelines for platform designers to build their permission systems according to respective adversary models and resources. In particular, I implement the new permission system for social platforms and Internet of Things (IoT) platforms that enable least-privilege information sharing. For the social platforms, I incorporate the primitives of Opaque handle, Opaque display, and User-driven access control (OOU) to design a least-privilege, user-friendly, developer-friendly, and feature-rich permission system. According to my study on Facebook, OOU can be applied to remove or replace 81.2% of sensitive permission instances without affecting functionality. For IoT platforms, I present a new authorization framework, SmartAuth, that supports user-centric, semantic-based authorization. SmartAuth automatically collects security-relevant information from an IoT application's description, code, and annotations, and generates an authorization user interface to bridge the gap between the functionalities explained to the user and the operations the application actually performs.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer engineering.
$3
569006
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0464
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Carnegie Mellon University.
$b
Electrical and Computer Engineering.
$3
1182305
773
0
$t
Dissertation Abstracts International
$g
79-09B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10615518
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入