語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Modeling Data Center Co-tenancy Perf...
~
ProQuest Information and Learning Co.
Modeling Data Center Co-tenancy Performance Interference.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Modeling Data Center Co-tenancy Performance Interference./
作者:
Kuang, Wei.
面頁冊數:
1 online resource (191 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Contained By:
Dissertation Abstracts International79-10B(E).
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9780355979503
Modeling Data Center Co-tenancy Performance Interference.
Kuang, Wei.
Modeling Data Center Co-tenancy Performance Interference.
- 1 online resource (191 pages)
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Thesis (Ph.D.)--Michigan Technological University, 2018.
Includes bibliographical references
A multi-core machine allows executing several applications simultaneously. Those jobs are scheduled on different cores and compete for shared resources such as the last level cache and memory bandwidth. Such competitions might cause performance degradation. Data centers often utilize virtualization to provide a certain level of performance isolation. However, some of the shared resources cannot be divided, even in a virtualized system, to ensure complete isolation. If the performance degradation of co-tenancy is not known to the cloud administrator, a data center often has to dedicate a whole machine for a latency-sensitive application to guarantee its quality of service. Co-run scheduling attempts to make good utilization of resources by scheduling compatible jobs into one machine while maintaining their service level agreements. An ideal co-run scheduling scheme requires accurate contention modeling. Recent studies for co-run modeling and scheduling have made steady progress to predict performance for two co-run applications sharing a specific system. This thesis advances co-tenancy modeling in three aspects. First, with an accurate co-run modeling for one system at hand, we propose a regression model to transfer the knowledge and create a model for a new system with different hardware configuration. Second, by examining those programs that yield high prediction errors, we further leverage clustering techniques to create a model for each group of applications that show similar behavior. Clustering helps improve the prediction accuracy of those pathological cases. Third, existing research is typically focused on modeling two application co-run cases. We extend a two-core model to a three- and four-core model by introducing a light-weight micro-kernel that emulates a complicated benchmark through program instrumentation. Our experimental evaluation shows that our cross-architecture model achieves an average prediction error less than 2% for pairwise co-runs across the SPECCPU2006 benchmark suite. For more than two application co-tenancy modeling, we show that our model is more scalable and can achieve an average prediction error of 2--3%.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355979503Subjects--Topical Terms:
573171
Computer science.
Index Terms--Genre/Form:
554714
Electronic books.
Modeling Data Center Co-tenancy Performance Interference.
LDR
:03397ntm a2200325Ki 4500
001
916677
005
20180927111921.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780355979503
035
$a
(MiAaPQ)AAI10791443
035
$a
(MiAaPQ)michigantech:11506
035
$a
AAI10791443
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Kuang, Wei.
$3
1190485
245
1 0
$a
Modeling Data Center Co-tenancy Performance Interference.
264
0
$c
2018
300
$a
1 online resource (191 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500
$a
Advisers: Zhenlin Wang; Laura E. Brown.
502
$a
Thesis (Ph.D.)--Michigan Technological University, 2018.
504
$a
Includes bibliographical references
520
$a
A multi-core machine allows executing several applications simultaneously. Those jobs are scheduled on different cores and compete for shared resources such as the last level cache and memory bandwidth. Such competitions might cause performance degradation. Data centers often utilize virtualization to provide a certain level of performance isolation. However, some of the shared resources cannot be divided, even in a virtualized system, to ensure complete isolation. If the performance degradation of co-tenancy is not known to the cloud administrator, a data center often has to dedicate a whole machine for a latency-sensitive application to guarantee its quality of service. Co-run scheduling attempts to make good utilization of resources by scheduling compatible jobs into one machine while maintaining their service level agreements. An ideal co-run scheduling scheme requires accurate contention modeling. Recent studies for co-run modeling and scheduling have made steady progress to predict performance for two co-run applications sharing a specific system. This thesis advances co-tenancy modeling in three aspects. First, with an accurate co-run modeling for one system at hand, we propose a regression model to transfer the knowledge and create a model for a new system with different hardware configuration. Second, by examining those programs that yield high prediction errors, we further leverage clustering techniques to create a model for each group of applications that show similar behavior. Clustering helps improve the prediction accuracy of those pathological cases. Third, existing research is typically focused on modeling two application co-run cases. We extend a two-core model to a three- and four-core model by introducing a light-weight micro-kernel that emulates a complicated benchmark through program instrumentation. Our experimental evaluation shows that our cross-architecture model achieves an average prediction error less than 2% for pairwise co-runs across the SPECCPU2006 benchmark suite. For more than two application co-tenancy modeling, we show that our model is more scalable and can achieve an average prediction error of 2--3%.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Michigan Technological University.
$b
Computer Science.
$3
1179375
773
0
$t
Dissertation Abstracts International
$g
79-10B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10791443
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入