語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Application of Machine Learning : = ...
~
Fang, Zhou.
Application of Machine Learning : = An Analysis of Asian Options Pricing Using Neural Network.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Application of Machine Learning :/
其他題名:
An Analysis of Asian Options Pricing Using Neural Network.
作者:
Fang, Zhou.
面頁冊數:
1 online resource (73 pages)
附註:
Source: Masters Abstracts International, Volume: 57-06.
Contained By:
Masters Abstracts International57-06(E).
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9780438062696
Application of Machine Learning : = An Analysis of Asian Options Pricing Using Neural Network.
Fang, Zhou.
Application of Machine Learning :
An Analysis of Asian Options Pricing Using Neural Network. - 1 online resource (73 pages)
Source: Masters Abstracts International, Volume: 57-06.
Thesis (M.S.)--Oklahoma State University, 2017.
Includes bibliographical references
Pricing Asian Option is imperative to researchers, analysts, traders and any other related experts involved in the option trading markets and the academic field. Not only trading highly affected by the accuracy of the price of Asian options but also portfolios that involve hedging of commodity. Several attempts have been made to model the Asian option prices with closed-form over the past twenty years such as the Kemna-Vorst Model and Levy Approximation. Although today the two closed-form models are still widely used, their accuracy and reliability are called into question. The reason is simple; the Kemna-Vorst model is derived with an assumption of geometric mean of the stocks. In practice, Average Priced Options are mostly arithmetic and thus always have a volatility high than the volatility of a geometric mean making the Asian options always underpriced. On the other hand, the Levy Approximation using Monte Carlo Simulation as a benchmark, do not perform well when the product of the sigma (volatility) and square root maturity of the underlying is larger than 0.2. When the maturity of the option enlarges, the performance of the Levy Approximation largely deteriorates. If the closed-form models could be improved, higher frequency trading of Asian option will become possible. Moreover, building neural networks for different contracts of Asian Options allows reuse of computed prices and large-scale portfolio management that involves many contracts. In this thesis, we use Neural Network to fill the gap between the price of a closed-form model and that of an Asian option. The significance of this method answers two interesting questions. First, could an Asian option trader with a systematic behavior in pricing learned from previous quotes improve his pricing or trading performance in the future? Second, will a training set of previous data help to improve the performance of a financial model? We perform two simulation experiments and show that the performance of the closed-form model is significantly improved. Moreover, we extend the learning process to real data quote. The use of Neural Network highly improves the accuracy of the traditional closed-form model. The model's original price is not so much accurate as what we estimate using Neural network and could not capture the high volatility effectively; still, it provides a relative reasonable fit to the problem (Especially the Levy Model). The analysis shows that the Neural Network Algorithms we used affect the results significantly.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780438062696Subjects--Topical Terms:
573171
Computer science.
Index Terms--Genre/Form:
554714
Electronic books.
Application of Machine Learning : = An Analysis of Asian Options Pricing Using Neural Network.
LDR
:03768ntm a2200349Ki 4500
001
916792
005
20180928111501.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780438062696
035
$a
(MiAaPQ)AAI10607432
035
$a
(MiAaPQ)okstate:15329
035
$a
AAI10607432
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Fang, Zhou.
$3
1190629
245
1 0
$a
Application of Machine Learning :
$b
An Analysis of Asian Options Pricing Using Neural Network.
264
0
$c
2017
300
$a
1 online resource (73 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 57-06.
500
$a
Adviser: K.M George.
502
$a
Thesis (M.S.)--Oklahoma State University, 2017.
504
$a
Includes bibliographical references
520
$a
Pricing Asian Option is imperative to researchers, analysts, traders and any other related experts involved in the option trading markets and the academic field. Not only trading highly affected by the accuracy of the price of Asian options but also portfolios that involve hedging of commodity. Several attempts have been made to model the Asian option prices with closed-form over the past twenty years such as the Kemna-Vorst Model and Levy Approximation. Although today the two closed-form models are still widely used, their accuracy and reliability are called into question. The reason is simple; the Kemna-Vorst model is derived with an assumption of geometric mean of the stocks. In practice, Average Priced Options are mostly arithmetic and thus always have a volatility high than the volatility of a geometric mean making the Asian options always underpriced. On the other hand, the Levy Approximation using Monte Carlo Simulation as a benchmark, do not perform well when the product of the sigma (volatility) and square root maturity of the underlying is larger than 0.2. When the maturity of the option enlarges, the performance of the Levy Approximation largely deteriorates. If the closed-form models could be improved, higher frequency trading of Asian option will become possible. Moreover, building neural networks for different contracts of Asian Options allows reuse of computed prices and large-scale portfolio management that involves many contracts. In this thesis, we use Neural Network to fill the gap between the price of a closed-form model and that of an Asian option. The significance of this method answers two interesting questions. First, could an Asian option trader with a systematic behavior in pricing learned from previous quotes improve his pricing or trading performance in the future? Second, will a training set of previous data help to improve the performance of a financial model? We perform two simulation experiments and show that the performance of the closed-form model is significantly improved. Moreover, we extend the learning process to real data quote. The use of Neural Network highly improves the accuracy of the traditional closed-form model. The model's original price is not so much accurate as what we estimate using Neural network and could not capture the high volatility effectively; still, it provides a relative reasonable fit to the problem (Especially the Levy Model). The analysis shows that the Neural Network Algorithms we used affect the results significantly.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Artificial intelligence.
$3
559380
650
4
$a
Finance.
$3
559073
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0800
690
$a
0508
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Oklahoma State University.
$b
Computer Science.
$3
1188618
773
0
$t
Masters Abstracts International
$g
57-06(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10607432
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入