語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Predictive Learning with Heterogenei...
~
University of Minnesota.
Predictive Learning with Heterogeneity in Populations.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Predictive Learning with Heterogeneity in Populations./
作者:
Karpatne, Anuj.
面頁冊數:
1 online resource (133 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Contained By:
Dissertation Abstracts International79-03B(E).
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9780355521764
Predictive Learning with Heterogeneity in Populations.
Karpatne, Anuj.
Predictive Learning with Heterogeneity in Populations.
- 1 online resource (133 pages)
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
Thesis (Ph.D.)--University of Minnesota, 2017.
Includes bibliographical references
Predictive learning forms the backbone of several data-driven systems powering scientific as well as commercial applications, e.g., filtering spam messages, detecting faces in images, forecasting health risks, and mapping ecological resources. However, one of the major challenges in applying standard predictive learning methods in real-world applications is the heterogeneity in populations of data instances, i.e., different groups (or populations) of data instances show different nature of predictive relationships. For example, different populations of human subjects may show different risks for a disease even if they have similar diagnosis reports, depending on their ethnic profiles, medical history, and lifestyle choices. In the presence of population heterogeneity, a central challenge is that the training data comprises of instances belonging from multiple populations, and the instances in the test set may be from a different population than that of the training instances. This limits the effectiveness of standard predictive learning frameworks that are based on the assumption that the instances are independent and identically distributed (i.i.d), which are ideally true only in simplistic settings.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355521764Subjects--Topical Terms:
573171
Computer science.
Index Terms--Genre/Form:
554714
Electronic books.
Predictive Learning with Heterogeneity in Populations.
LDR
:03694ntm a2200349Ki 4500
001
916819
005
20180928111501.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355521764
035
$a
(MiAaPQ)AAI10637457
035
$a
(MiAaPQ)umn:18696
035
$a
AAI10637457
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Karpatne, Anuj.
$3
1190664
245
1 0
$a
Predictive Learning with Heterogeneity in Populations.
264
0
$c
2017
300
$a
1 online resource (133 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-03(E), Section: B.
500
$a
Adviser: Vipin Kumar.
502
$a
Thesis (Ph.D.)--University of Minnesota, 2017.
504
$a
Includes bibliographical references
520
$a
Predictive learning forms the backbone of several data-driven systems powering scientific as well as commercial applications, e.g., filtering spam messages, detecting faces in images, forecasting health risks, and mapping ecological resources. However, one of the major challenges in applying standard predictive learning methods in real-world applications is the heterogeneity in populations of data instances, i.e., different groups (or populations) of data instances show different nature of predictive relationships. For example, different populations of human subjects may show different risks for a disease even if they have similar diagnosis reports, depending on their ethnic profiles, medical history, and lifestyle choices. In the presence of population heterogeneity, a central challenge is that the training data comprises of instances belonging from multiple populations, and the instances in the test set may be from a different population than that of the training instances. This limits the effectiveness of standard predictive learning frameworks that are based on the assumption that the instances are independent and identically distributed (i.i.d), which are ideally true only in simplistic settings.
520
$a
This thesis introduces several ways of learning predictive models with heterogeneity in populations, by incorporating information about the context of every data instance, which is available in varying types and formats in different application settings. It introduces a novel multi-task learning framework for problems where we have access to some ancillary variables that can be grouped to produce homogeneous partitions of data instances, thus addressing the heterogeneity in populations. This thesis also introduces a novel strategy for constructing mode-specific ensembles in binary classification settings, where each class shows multi-modal distribution due to the heterogeneity in their populations. When the context of data instances is implicitly defined such that the test data is known to comprise of contextually similar groups, this thesis presents a novel framework for adapting classification decisions using the group-level properties of test instances. This thesis also builds the foundations of a novel paradigm of scientific discovery, termed as theory-guided data science, that seeks to explore the full potential of data science methods but without ignoring the treasure of knowledge contained in scientific theories and principles.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Artificial intelligence.
$3
559380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0800
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Minnesota.
$b
Computer Science.
$3
1180176
773
0
$t
Dissertation Abstracts International
$g
79-03B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10637457
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入