語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data-efficient Analytics for Optimal...
~
ProQuest Information and Learning Co.
Data-efficient Analytics for Optimal Human-Cyber-Physical Systems.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Data-efficient Analytics for Optimal Human-Cyber-Physical Systems./
作者:
Jin, Ming.
面頁冊數:
1 online resource (169 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Contained By:
Dissertation Abstracts International79-08B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355832181
Data-efficient Analytics for Optimal Human-Cyber-Physical Systems.
Jin, Ming.
Data-efficient Analytics for Optimal Human-Cyber-Physical Systems.
- 1 online resource (169 pages)
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Thesis (Ph.D.)--University of California, Berkeley, 2017.
Includes bibliographical references
The goal of this research is to enable optimal human-cyber-physical systems (h-CPS) by data-efficient analytics. The capacities of societal-scale infrastructures such as smart buildings and power grids are rapidly increasing, becoming physical systems capable of cyber computation that can deliver human-centric services while enhancing efficiency and resilience. Because people are central to h-CPS, the first part of this thesis is dedicated to learning about the human factors, including both human behaviors and preferences. To address the central challenge of data scarcity, we propose physics-inspired sensing by proxy and a framework of "weak supervision" to leverage high-level heuristics from domain knowledge. To infer human preferences, our key insight is to learn a functional abstraction that can rationalize people's behaviors. Drawing on this insight, we develop an inverse game theory framework that determines people's utility functions by observing how they interact with one another in a social game to conserve energy. We further propose deep Bayesian inverse reinforcement learning, which simultaneously learns a motivator representation to expand the capacity of modeling complex rewards and rationalizes an agent's sequence of actions to infer its long-term goals.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355832181Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Data-efficient Analytics for Optimal Human-Cyber-Physical Systems.
LDR
:03456ntm a2200361Ki 4500
001
916850
005
20180928111502.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355832181
035
$a
(MiAaPQ)AAI10688465
035
$a
(MiAaPQ)berkeley:17662
035
$a
AAI10688465
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Jin, Ming.
$3
1190701
245
1 0
$a
Data-efficient Analytics for Optimal Human-Cyber-Physical Systems.
264
0
$c
2017
300
$a
1 online resource (169 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
500
$a
Adviser: Costas Spanos.
502
$a
Thesis (Ph.D.)--University of California, Berkeley, 2017.
504
$a
Includes bibliographical references
520
$a
The goal of this research is to enable optimal human-cyber-physical systems (h-CPS) by data-efficient analytics. The capacities of societal-scale infrastructures such as smart buildings and power grids are rapidly increasing, becoming physical systems capable of cyber computation that can deliver human-centric services while enhancing efficiency and resilience. Because people are central to h-CPS, the first part of this thesis is dedicated to learning about the human factors, including both human behaviors and preferences. To address the central challenge of data scarcity, we propose physics-inspired sensing by proxy and a framework of "weak supervision" to leverage high-level heuristics from domain knowledge. To infer human preferences, our key insight is to learn a functional abstraction that can rationalize people's behaviors. Drawing on this insight, we develop an inverse game theory framework that determines people's utility functions by observing how they interact with one another in a social game to conserve energy. We further propose deep Bayesian inverse reinforcement learning, which simultaneously learns a motivator representation to expand the capacity of modeling complex rewards and rationalizes an agent's sequence of actions to infer its long-term goals.
520
$a
Enabled by this contextual awareness of the human, cyber, and physical states, we introduce methods to analyze and enhance system-level efficiency and resilience. We propose an energy retail model that enables distributed energy resource utilization and that exploits demand-side flexibility. The synergy that naturally emerges from integrated optimization of thermal and electrical energy provision substantially improves efficiency and economy. While data empowers the aforementioned h-CPS learning and control, malicious attacks can pose major security threats. The cyber resilience of power system state estimation is analyzed. The envisioning process naturally leads to a power grid resilience metric to guide "grid hardening." While the methods introduced in the thesis can be applied to many h-CPS systems, this thesis focuses primarily on the implications for smart buildings and smart grid.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
650
4
$a
Computer science.
$3
573171
650
4
$a
Artificial intelligence.
$3
559380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
690
$a
0984
690
$a
0800
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of California, Berkeley.
$b
Electrical Engineering.
$3
1181757
773
0
$t
Dissertation Abstracts International
$g
79-08B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10688465
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入