語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Robust Intelligent Agents for Wirele...
~
The University of Arizona.
Robust Intelligent Agents for Wireless Communications : = Design and Development of Metacognitive Radio Engines.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Robust Intelligent Agents for Wireless Communications :/
其他題名:
Design and Development of Metacognitive Radio Engines.
作者:
Asadi, Hamed.
面頁冊數:
1 online resource (195 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-07(E), Section: B.
Contained By:
Dissertation Abstracts International79-07B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355672343
Robust Intelligent Agents for Wireless Communications : = Design and Development of Metacognitive Radio Engines.
Asadi, Hamed.
Robust Intelligent Agents for Wireless Communications :
Design and Development of Metacognitive Radio Engines. - 1 online resource (195 pages)
Source: Dissertation Abstracts International, Volume: 79-07(E), Section: B.
Thesis (Ph.D.)--The University of Arizona, 2018.
Includes bibliographical references
Improving the efficiency of spectrum access and utilization under the umbrella of cognitive radio (CR) is one of the most crucial research areas for nearly two decades. The results have been algorithms called cognitive radio engines which use machine learning (ML) to learn and adapt the communication's link based on the operating scenarios. While a number of algorithms for cognitive engine design have been identified, it is widely understood that significant room remains to grow the capabilities of the cognitive engines, and substantially better spectrum utilization and higher throughput can be achieved if cognitive engines are improved. This requires working through some difficult challenges and takes an innovative look at the problem. A tenet of the existing cognitive engine designs is that they are usually designed around one primary ML algorithm or framework. In this dissertation, we discover that it is entirely possible for an algorithm to perform better in one operating scenario (combination of channel conditions, available energy, and operational objectives such as max throughput, and max energy efficiency) while performing less effectively in other operating scenarios. This arises due to the unique behavior of an individual ML algorithm regardless of its operating conditions. Therefore, there is no individual algorithm or parameter sets that have superiority in performance over all other algorithms or parameter sets in all operating scenarios. Using the same algorithm at all times may present a performance that is acceptable, yet may not be the best possible performance under all operating scenarios we are faced with over time. Ideally, the system should be able to adapt its behavior by switching between various ML algorithms or adjusting the operating ML algorithm for the prevailing operating conditions and goal.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355672343Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Robust Intelligent Agents for Wireless Communications : = Design and Development of Metacognitive Radio Engines.
LDR
:06640ntm a2200373Ki 4500
001
916857
005
20180928111502.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780355672343
035
$a
(MiAaPQ)AAI10743508
035
$a
(MiAaPQ)arizona:16100
035
$a
AAI10743508
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Asadi, Hamed.
$3
1190710
245
1 0
$a
Robust Intelligent Agents for Wireless Communications :
$b
Design and Development of Metacognitive Radio Engines.
264
0
$c
2018
300
$a
1 online resource (195 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-07(E), Section: B.
500
$a
Advisers: Michael M. Marefat; Tamal Bose.
502
$a
Thesis (Ph.D.)--The University of Arizona, 2018.
504
$a
Includes bibliographical references
520
$a
Improving the efficiency of spectrum access and utilization under the umbrella of cognitive radio (CR) is one of the most crucial research areas for nearly two decades. The results have been algorithms called cognitive radio engines which use machine learning (ML) to learn and adapt the communication's link based on the operating scenarios. While a number of algorithms for cognitive engine design have been identified, it is widely understood that significant room remains to grow the capabilities of the cognitive engines, and substantially better spectrum utilization and higher throughput can be achieved if cognitive engines are improved. This requires working through some difficult challenges and takes an innovative look at the problem. A tenet of the existing cognitive engine designs is that they are usually designed around one primary ML algorithm or framework. In this dissertation, we discover that it is entirely possible for an algorithm to perform better in one operating scenario (combination of channel conditions, available energy, and operational objectives such as max throughput, and max energy efficiency) while performing less effectively in other operating scenarios. This arises due to the unique behavior of an individual ML algorithm regardless of its operating conditions. Therefore, there is no individual algorithm or parameter sets that have superiority in performance over all other algorithms or parameter sets in all operating scenarios. Using the same algorithm at all times may present a performance that is acceptable, yet may not be the best possible performance under all operating scenarios we are faced with over time. Ideally, the system should be able to adapt its behavior by switching between various ML algorithms or adjusting the operating ML algorithm for the prevailing operating conditions and goal.
520
$a
In this dissertation, we introduce a novel architecture for cognitive radio engines, with the goal of better cognitive engines for improved link adaptation in order to enhance spectrum utilization. This architecture is capable of meta-reasoning and metacognition and the algorithms developed based on this architecture are called metacognitive engines (meta-CE). Meta-reasoning and metacognitive abilities provide for self-assessment, self-awareness, and inherent use and adaptation of multiple methods for link adaptation and utilization. In this work, we provide four different implementation instances of the proposed meta-CE architecture. First, a meta-CE which is equipped with a classification algorithm to find the most appropriate individual cognitive engine algorithm for each operating scenario. The meta-CE switches between the individual cognitive engine algorithms to decrease the training period of the learning algorithms and not only find the most optimal communication configuration in the fastest possible time but also provide the acceptable performance during its training period. Second, we provide different knowledge indicators for estimating the experience level of cognitive engine algorithms. We introduce a meta-CE equipped with these knowledge indicators extracted from metacognitive knowledge component. This meta-CE adjusts the exploration factors of learning algorithms to gain higher performance and decrease training time. The third implementation of meta-CE is based on the robust training algorithm (RoTA) which switches and adjusts the individual cognitive engine algorithms to guarantee a minimum performance level during the training phase. This meta-CE is also equipped with forgetting factor to deal with non-stationary channel scenarios. The last implementation of meta-CE enables the individual cognitive engine algorithms to handle delayed feedback scenarios. We analyze the impact of delayed feedback on cognitive radio engines' performances in two cases of constant and varying delay. Then we propose two meta-CEs to address the delayed feedback problem in cognitive engine algorithms.
520
$a
Our experimental results show that the meta-CE approach, when utilized for a CRS engine performed about 20 percent better (total throughput) than the second best performing algorithm, because of its ability to learn about its own learning and adaptation. In effect, the meta-CE is able to deliver about 70% more data than the CE with the fixed exploration rate in the 1000 decision steps. Moreover, the knowledge indicator (KI) autocorrelation plots show that the proposed KIs can predict the performance of the CEs as early as 100 time steps in advance. In non-stationary environments, the proposed RoTA based meta-CE guarantees the minimum required performance of a CRS while it's searching for the optimal communication configurations. The RoTA based meta-CE delivers at least about 45% more data than the other algorithms in non-stationary scenarios when the channel conditions are often fluctuating. Furthermore, in delayed feedback scenarios, our results show that the proposed meta-CE algorithms are able to mitigate the adverse impact of delay in low latency scenarios and relieve the effects in high latency situations. The proposed algorithms show a minimum of 15% improvement in their performance compared to the other available delayed feedback strategies in literature. (Abstract shortened by ProQuest.).
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
650
4
$a
Computer engineering.
$3
569006
650
4
$a
Artificial intelligence.
$3
559380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
690
$a
0464
690
$a
0800
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of Arizona.
$b
Electrical & Computer Engineering.
$3
1189571
773
0
$t
Dissertation Abstracts International
$g
79-07B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10743508
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入