語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Kernel Mechanisms for Efficient GPU ...
~
ProQuest Information and Learning Co.
Kernel Mechanisms for Efficient GPU Accelerated Deep Neural Network Inference on Embedded Devices.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Kernel Mechanisms for Efficient GPU Accelerated Deep Neural Network Inference on Embedded Devices./
作者:
Nigam, Hemant.
面頁冊數:
1 online resource (87 pages)
附註:
Source: Masters Abstracts International, Volume: 57-05.
Contained By:
Masters Abstracts International57-05(E).
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9780355850222
Kernel Mechanisms for Efficient GPU Accelerated Deep Neural Network Inference on Embedded Devices.
Nigam, Hemant.
Kernel Mechanisms for Efficient GPU Accelerated Deep Neural Network Inference on Embedded Devices.
- 1 online resource (87 pages)
Source: Masters Abstracts International, Volume: 57-05.
Thesis (Master's)--University of Washington, 2018.
Includes bibliographical references
Embedded platforms with integrated graphics processing units (GPUs) are popular choices, for use-cases, like Autonomous machines, to run the Deep Neural Networks (DNNs) inference workload. However, due to a rapid increase in data volume, DNN inference is becoming even more computationally intensive and memory sensitive, which necessitates a mechanism for improving DNN inference efficiency on existing embedded systems.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355850222Subjects--Topical Terms:
573171
Computer science.
Index Terms--Genre/Form:
554714
Electronic books.
Kernel Mechanisms for Efficient GPU Accelerated Deep Neural Network Inference on Embedded Devices.
LDR
:02264ntm a2200349Ki 4500
001
916868
005
20180928111502.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780355850222
035
$a
(MiAaPQ)AAI10750237
035
$a
(MiAaPQ)washington:18302
035
$a
AAI10750237
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Nigam, Hemant.
$3
1190725
245
1 0
$a
Kernel Mechanisms for Efficient GPU Accelerated Deep Neural Network Inference on Embedded Devices.
264
0
$c
2018
300
$a
1 online resource (87 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 57-05.
500
$a
Adviser: Michael Stiber.
502
$a
Thesis (Master's)--University of Washington, 2018.
504
$a
Includes bibliographical references
520
$a
Embedded platforms with integrated graphics processing units (GPUs) are popular choices, for use-cases, like Autonomous machines, to run the Deep Neural Networks (DNNs) inference workload. However, due to a rapid increase in data volume, DNN inference is becoming even more computationally intensive and memory sensitive, which necessitates a mechanism for improving DNN inference efficiency on existing embedded systems.
520
$a
This Master's thesis investigates the memory sensitivity of DNN inference---specifically, the impact of off-chip memory (DRAM) contention on DNN inference performance. It demonstrates a prototype GPU aware memory isolation mechanism: a locking mechanism in the GPU driver to reduce DRAM contention caused by multicore CPUs, thus improving DNN inference efficiency. Experiments performed on a Jetson TX2 board running the Linux4Tegra OS shows the benefits of our proposed mechanism, with up to 13.5% speedup of a micro-benchmark and up to 41% and 86% speedup of two object detection benchmarks.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
650
4
$a
Artificial intelligence.
$3
559380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
690
$a
0800
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Washington.
$b
Computing and Software System.
$3
1179443
773
0
$t
Masters Abstracts International
$g
57-05(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10750237
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入