語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Learning Markov Logic Network Struct...
~
ProQuest Information and Learning Co.
Learning Markov Logic Network Structure by Template Constructing.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Learning Markov Logic Network Structure by Template Constructing./
作者:
Tong, Yingbei.
面頁冊數:
1 online resource (30 pages)
附註:
Source: Masters Abstracts International, Volume: 56-05.
Contained By:
Masters Abstracts International56-05(E).
標題:
Computer science. -
電子資源:
click for full text (PQDT)
ISBN:
9781369884326
Learning Markov Logic Network Structure by Template Constructing.
Tong, Yingbei.
Learning Markov Logic Network Structure by Template Constructing.
- 1 online resource (30 pages)
Source: Masters Abstracts International, Volume: 56-05.
Thesis (M.S.)--Iowa State University, 2017.
Includes bibliographical references
Markov logic networks (MLNs) are a statistical relational model that incorporates first- order logic and probability by attaching weights to first-order clauses. However, due to the large search space, the structure learning of MLNs is a computationally expensive problem. In this paper, we present a new algorithm for learning the structure of Markov Logic Network by directly utilizing the data to construct the candidate clauses. Our approach makes use of a Markov Network learning algorithm to construct a template network. We then apply the template to guide the candidate clauses construction process. The experimental results demonstrate that our algorithm is promising.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9781369884326Subjects--Topical Terms:
573171
Computer science.
Index Terms--Genre/Form:
554714
Electronic books.
Learning Markov Logic Network Structure by Template Constructing.
LDR
:01840ntm a2200325Ki 4500
001
917026
005
20181005115846.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9781369884326
035
$a
(MiAaPQ)AAI10271469
035
$a
(MiAaPQ)iastate:16528
035
$a
AAI10271469
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Tong, Yingbei.
$3
1190931
245
1 0
$a
Learning Markov Logic Network Structure by Template Constructing.
264
0
$c
2017
300
$a
1 online resource (30 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Masters Abstracts International, Volume: 56-05.
500
$a
Adviser: Jin Tian.
502
$a
Thesis (M.S.)--Iowa State University, 2017.
504
$a
Includes bibliographical references
520
$a
Markov logic networks (MLNs) are a statistical relational model that incorporates first- order logic and probability by attaching weights to first-order clauses. However, due to the large search space, the structure learning of MLNs is a computationally expensive problem. In this paper, we present a new algorithm for learning the structure of Markov Logic Network by directly utilizing the data to construct the candidate clauses. Our approach makes use of a Markov Network learning algorithm to construct a template network. We then apply the template to guide the candidate clauses construction process. The experimental results demonstrate that our algorithm is promising.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Iowa State University.
$b
Computer Science.
$3
1190932
773
0
$t
Masters Abstracts International
$g
56-05(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10271469
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入