語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Fault Diagnosis in Digital Circuits.
~
ProQuest Information and Learning Co.
Fault Diagnosis in Digital Circuits.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Fault Diagnosis in Digital Circuits./
作者:
Mahmoud, Mohamed Saleh Soliman.
面頁冊數:
1 online resource (60 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Contained By:
Dissertation Abstracts International79-04B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355460582
Fault Diagnosis in Digital Circuits.
Mahmoud, Mohamed Saleh Soliman.
Fault Diagnosis in Digital Circuits.
- 1 online resource (60 pages)
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Thesis (D.Engr.)--University of California, Davis, 2017.
Includes bibliographical references
The goals of fault diagnosis are to ascertain whether faults are present in (fault detection) and to identify them (fault location). Fault location is commonly performed with the aid of a fault dictionary. Fault dictionaries are constructed via fault simulation under the single fault assumption. The single fault-model often assumes a circuit is tested often enough such that no more than one physical defect is likely to occur between two consecutive test applications. This strategy is not valid when one physical defect manifests itself as multiple faults. It is observed that the presence of redundant faults also invalidates the frequent testing strategy, since a redundant fault may mask the existence of a detectable fault. In all these situations, a multiple fault model is required. However, in almost all practical cases a fault dictionary for multiple faults is infeasible to generate due to an exponential number of equivalence classes.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355460582Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Fault Diagnosis in Digital Circuits.
LDR
:05308ntm a2200385Ki 4500
001
917806
005
20181022132248.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355460582
035
$a
(MiAaPQ)AAI10264005
035
$a
(MiAaPQ)ucdavis:16918
035
$a
AAI10264005
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Mahmoud, Mohamed Saleh Soliman.
$3
1191978
245
1 0
$a
Fault Diagnosis in Digital Circuits.
264
0
$c
2017
300
$a
1 online resource (60 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
500
$a
Adviser: Hussain Al-Assad.
502
$a
Thesis (D.Engr.)--University of California, Davis, 2017.
504
$a
Includes bibliographical references
520
$a
The goals of fault diagnosis are to ascertain whether faults are present in (fault detection) and to identify them (fault location). Fault location is commonly performed with the aid of a fault dictionary. Fault dictionaries are constructed via fault simulation under the single fault assumption. The single fault-model often assumes a circuit is tested often enough such that no more than one physical defect is likely to occur between two consecutive test applications. This strategy is not valid when one physical defect manifests itself as multiple faults. It is observed that the presence of redundant faults also invalidates the frequent testing strategy, since a redundant fault may mask the existence of a detectable fault. In all these situations, a multiple fault model is required. However, in almost all practical cases a fault dictionary for multiple faults is infeasible to generate due to an exponential number of equivalence classes.
520
$a
In this dissertation, we first present a VHDL-based CAD tool that integrates design error injection, simulation, and diagnosis for digital circuits. The tool uses an FPGA-based board to inject error models in the design and compute the error free and erroneous signatures of internal lines. The signatures are later used for detection and diagnosis of errors for the circuit under test (CUT). Several experiments were conducted to demonstrate the capabilities of the tool. The obtained results demonstrate that the tool could detect and locate the source faulty node(s) within the CUT.
520
$a
Then, a new approach for a developed fault diagnosis method. Our approach is based on an enhanced deduction algorithm, which processes the actual response (effect) of CUT, to determine fault situations (causes). The main tool of our approach processes the response to deduce the internal signal values.
520
$a
A multiple stuck at fault model is implicitly employed and no-fault enumeration is required. The enhanced deduction algorithm is applicable to complicated combinational circuits. The internal values obtained are used to determine fault situations in CUT compatible with the applied test T and the response. Our analysis can identify fault locations and values (s-a-0 or s-a-1). Our main result is that any stuck fault can be diagnosed. Preliminary results demonstrate that our technique always achieves great accuracy for detecting and locating the faults, saving a large amount of time, especially for more complicated combinational circuits. The problems solved by our procedure are using deterministic test vectors.
520
$a
We next present a new approach for a developed fault diagnosis method. Our approach is based on an enhanced deduction algorithm and a backtracking strategy which can be regarded as a recursive process of value justification in which we first justify (explain) the values obtained at the primary outputs (POs). To justify a (0) value on the output of a- NAND gate (assuming it is normal), we need all the gate inputs to be (1). To justify a (1) value we need at least one input to have value (0). All the known values of internal normal lines must be justified by values of their predecessors. When both 0 and 1 values have been deduced for a gate output and it is critical, it is identified as normal and all its currently known values are analyzed.
520
$a
In some cases, we need to decide to select one of the possible ways to justify a (1) value on the output of a- NAND gate. if a decision leads to an inconsistency (self-contradictory state) with the forward propagated value, the algorithm will backtrack to the last decision point and try an alternative decision. After a decision is made, all the implications resulting from that decision are performed. If no inconsistency is detected, a new decision point is necessary. Otherwise, a solution has been obtained. A solution is a set of values which could have occurred in the CUT, that is, a possible set of actual values. The main tool of our approach processes the response to deduce the internal signal values in all possible solutions.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of California, Davis.
$b
Electrical and Computer Engineering.
$3
1178925
773
0
$t
Dissertation Abstracts International
$g
79-04B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10264005
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入