語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multi-factor Sentiment Analysis for ...
~
ProQuest Information and Learning Co.
Multi-factor Sentiment Analysis for Gauging Investors Fear.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Multi-factor Sentiment Analysis for Gauging Investors Fear./
作者:
Tai, Ichihan.
面頁冊數:
1 online resource (111 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
Contained By:
Dissertation Abstracts International79-12B(E).
標題:
Engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780438278677
Multi-factor Sentiment Analysis for Gauging Investors Fear.
Tai, Ichihan.
Multi-factor Sentiment Analysis for Gauging Investors Fear.
- 1 online resource (111 pages)
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
Thesis (D.Engr.)--The George Washington University, 2018.
Includes bibliographical references
The Chicago Board Options Exchange Volatility Index (VIX) is widely used to gauge investor fear and measures the "insurance premiums" of the stock market. Traditionally, VIX prediction was done using time-series analysis models (e.g., GARCH), and some attempt was made to predict it using sentiment analysis approach. However, traditional sentiment analysis is focused on authors' sentiment (sentiment expressed in news authors' word choices), and this Praxis will demonstrate that adding other factors (e.g., similarity, readability) into the traditional authors' sentiment model will improve VIX prediction results. This Praxis research leverages natural language processing (NLP) and machine learning (ML) techniques to build a VIX prediction model.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780438278677Subjects--Topical Terms:
561152
Engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Multi-factor Sentiment Analysis for Gauging Investors Fear.
LDR
:02013ntm a2200349Ki 4500
001
919067
005
20181106103744.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780438278677
035
$a
(MiAaPQ)AAI10844773
035
$a
(MiAaPQ)gwu:14326
035
$a
AAI10844773
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Tai, Ichihan.
$3
1193550
245
1 0
$a
Multi-factor Sentiment Analysis for Gauging Investors Fear.
264
0
$c
2018
300
$a
1 online resource (111 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-12(E), Section: B.
500
$a
Advisers: Amir H. Etemadi; Ebrahim Malalla.
502
$a
Thesis (D.Engr.)--The George Washington University, 2018.
504
$a
Includes bibliographical references
520
$a
The Chicago Board Options Exchange Volatility Index (VIX) is widely used to gauge investor fear and measures the "insurance premiums" of the stock market. Traditionally, VIX prediction was done using time-series analysis models (e.g., GARCH), and some attempt was made to predict it using sentiment analysis approach. However, traditional sentiment analysis is focused on authors' sentiment (sentiment expressed in news authors' word choices), and this Praxis will demonstrate that adding other factors (e.g., similarity, readability) into the traditional authors' sentiment model will improve VIX prediction results. This Praxis research leverages natural language processing (NLP) and machine learning (ML) techniques to build a VIX prediction model.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Engineering.
$3
561152
650
4
$a
Finance.
$3
559073
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0537
690
$a
0508
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The George Washington University.
$b
Engineering Management.
$3
1179162
773
0
$t
Dissertation Abstracts International
$g
79-12B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10844773
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入