語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Context-Preserving Visual Analytics ...
~
ProQuest Information and Learning Co.
Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation./
作者:
Zhang, Jiawei.
面頁冊數:
1 online resource (123 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Contained By:
Dissertation Abstracts International79-10B(E).
標題:
Computer engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780438018587
Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
Zhang, Jiawei.
Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
- 1 online resource (123 pages)
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
Thesis (Ph.D.)--Purdue University, 2018.
Includes bibliographical references
Spatial datasets (i.e., location-based social media, crime incident reports, and demographic data) often exhibit varied distribution patterns at multiple spatial scales. Examining these patterns across different scales enhances the understanding from global to local perspectives and offers new insights into the nature of various spatial phenomena. Conventional navigation techniques in such multi-scale data-rich spaces are often inefficient, require users to choose between an overview or detailed information, and do not support identifying spatial patterns at varying scales. In this work, we present a context-preserving visual analytics technique that aggregates spatial datasets into hierarchical clusters and visualizes the multi-scale aggregates in a single visual space. We design a boundary distortion algorithm to minimize the visual clutter caused by overlapping aggregates and explore visual encoding strategies including color, transparency, shading, and shapes, in order to illustrate the hierarchical and statistical patterns of the multi-scale aggregates. We also propose a transparency-based technique that maintains a smooth visual transition as the users navigate across adjacent scales. To further support effective semantic exploration in the multi-scale space, we design a set of text-based encoding and layout methods that draw textual labels along the boundary or filled within the aggregates. The text itself not only summarizes the semantics at each scale, but also indicates the spatial coverage of the aggregates and their hierarchical relationships. We demonstrate the effectiveness of the proposed approaches through real-world application examples and user studies.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780438018587Subjects--Topical Terms:
569006
Computer engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
LDR
:02918ntm a2200337Ki 4500
001
919182
005
20181116131021.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780438018587
035
$a
(MiAaPQ)AAI10808507
035
$a
(MiAaPQ)purdue:22705
035
$a
AAI10808507
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Zhang, Jiawei.
$3
1193693
245
1 0
$a
Context-Preserving Visual Analytics of Multi-Scale Spatial Aggregation.
264
0
$c
2018
300
$a
1 online resource (123 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-10(E), Section: B.
500
$a
Adviser: David S. Ebert.
502
$a
Thesis (Ph.D.)--Purdue University, 2018.
504
$a
Includes bibliographical references
520
$a
Spatial datasets (i.e., location-based social media, crime incident reports, and demographic data) often exhibit varied distribution patterns at multiple spatial scales. Examining these patterns across different scales enhances the understanding from global to local perspectives and offers new insights into the nature of various spatial phenomena. Conventional navigation techniques in such multi-scale data-rich spaces are often inefficient, require users to choose between an overview or detailed information, and do not support identifying spatial patterns at varying scales. In this work, we present a context-preserving visual analytics technique that aggregates spatial datasets into hierarchical clusters and visualizes the multi-scale aggregates in a single visual space. We design a boundary distortion algorithm to minimize the visual clutter caused by overlapping aggregates and explore visual encoding strategies including color, transparency, shading, and shapes, in order to illustrate the hierarchical and statistical patterns of the multi-scale aggregates. We also propose a transparency-based technique that maintains a smooth visual transition as the users navigate across adjacent scales. To further support effective semantic exploration in the multi-scale space, we design a set of text-based encoding and layout methods that draw textual labels along the boundary or filled within the aggregates. The text itself not only summarizes the semantics at each scale, but also indicates the spatial coverage of the aggregates and their hierarchical relationships. We demonstrate the effectiveness of the proposed approaches through real-world application examples and user studies.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Computer engineering.
$3
569006
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0464
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
Purdue University.
$b
Electrical and Computer Engineering.
$3
1148521
773
0
$t
Dissertation Abstracts International
$g
79-10B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10808507
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入