語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Digital Signal Processing and Machin...
~
Liu, Yin.
Digital Signal Processing and Machine Learning System Design using Stochastic Logic.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Digital Signal Processing and Machine Learning System Design using Stochastic Logic./
作者:
Liu, Yin.
面頁冊數:
1 online resource (196 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Contained By:
Dissertation Abstracts International79-04B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355328158
Digital Signal Processing and Machine Learning System Design using Stochastic Logic.
Liu, Yin.
Digital Signal Processing and Machine Learning System Design using Stochastic Logic.
- 1 online resource (196 pages)
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
Thesis (Ph.D.)--University of Minnesota, 2017.
Includes bibliographical references
This dissertation considers the design of digital signal processing and machine learning systems in stochastic logic. The stochastic implementations of finite impulse response (FIR) and infinite impulse response (IIR) filters based on various lattice structures are presented. The implementations of complex functions such as trigonometric, exponential, and sigmoid, are derived based on truncated versions of their Maclaurin series expansions. We also present stochastic computation of polynomials using stochastic subtractors and factorization. The machine learning systems including artificial neural network (ANN) and support vector machine (SVM) in stochastic logic are also presented.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355328158Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Digital Signal Processing and Machine Learning System Design using Stochastic Logic.
LDR
:06716ntm a2200373Ki 4500
001
919589
005
20181129115238.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355328158
035
$a
(MiAaPQ)AAI10604827
035
$a
(MiAaPQ)umn:18377
035
$a
AAI10604827
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Liu, Yin.
$3
1187596
245
1 0
$a
Digital Signal Processing and Machine Learning System Design using Stochastic Logic.
264
0
$c
2017
300
$a
1 online resource (196 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-04(E), Section: B.
500
$a
Adviser: Keshab K. Parhi.
502
$a
Thesis (Ph.D.)--University of Minnesota, 2017.
504
$a
Includes bibliographical references
520
$a
This dissertation considers the design of digital signal processing and machine learning systems in stochastic logic. The stochastic implementations of finite impulse response (FIR) and infinite impulse response (IIR) filters based on various lattice structures are presented. The implementations of complex functions such as trigonometric, exponential, and sigmoid, are derived based on truncated versions of their Maclaurin series expansions. We also present stochastic computation of polynomials using stochastic subtractors and factorization. The machine learning systems including artificial neural network (ANN) and support vector machine (SVM) in stochastic logic are also presented.
520
$a
First, we propose novel implementations for linear-phase FIR filters in stochastic logic. The proposed design is based on lattice structures. Compared to direct-form linear-phase FIR filters, linear-phase lattice filters require twice the number of multipliers but the same number of adders. The hardware complexities of stochastic implementations of linear-phase FIR filters for direct-form and lattice structures are comparable. We propose stochastic implementation of IIR filters using lattice structures where the states are orthogonal and uncorrelated. We present stochastic IIR filters using basic, normalized and modified lattice structures. Simulation results demonstrate high signal-to-error ratio and fault tolerance in these structures. Furthermore, hardware synthesis results show that these filter structures require lower hardware area and power compared to two's complement realizations.
520
$a
Second, We present stochastic logic implementations of complex arithmetic functions based on truncated versions of their Maclaurin series expansions. It is shown that a polynomial can be implemented using multiple levels of NAND gates based on Horner's rule, if the coefficients are alternately positive and negative and their magnitudes are monotonically decreasing. Truncated Maclaurin series expansions of arithmetic functions are used to generate polynomials which satisfy these constraints. The input and output in these functions are represented by unipolar representation. For a polynomial that does not satisfy these constraints, it still can be implemented based on Horner's rule if each factor of the polynomial satisfies these constraints. format conversion is proposed for arithmetic functions with input and output represented in different formats, such as cospix given ∈ x [0, 1] and sigmoid(x) given ∈ [--1, 1]. Polynomials are transformed to equivalent forms that naturally exploit format conversions. The proposed stochastic logic circuits outperform the well-known Bernstein polynomial based and finite-state-machine (FSM) based implementations. Furthermore, the hardware complexity and the critical path of the proposed implementations are less than the Bernstein polynomial based and FSM based implementations for most cases.
520
$a
Third, we address subtraction and polynomial computations using unipolar stochastic logic. It is shown that stochastic computation of polynomials can be implemented by using a stochastic subtractor and factorization. Two approaches are proposed to compute subtraction in stochastic unipolar representation. In the first approach, the subtraction operation is approximated by cascading multi-levels of OR and AND gates. The accuracy of the approximation is improved with the increase in the number of stages. In the second approach, the stochastic subtraction is implemented using a multiplexer and a stochastic divider. We propose stochastic computation of polynomials using factorization. Stochastic implementations of first-order and second-order factors are presented for different locations of polynomial roots. From experimental results, it is shown that the proposed stochastic logic circuits require less hardware complexity than the previous stochastic polynomial implementation using Bernstein polynomials.
520
$a
Finally, this thesis presents novel architectures for machine learning based classifiers using stochastic logic. Three types of classifiers are considered. These include: linear support vector machine (SVM), artificial neural network (ANN) and radial basis function (RBF) SVM. These architectures are validated using seizure prediction from electroencephalogram (EEG) as an application example. To improve the accuracy of proposed stochastic classifiers, an approach of data-oriented linear transform for input data is proposed for EEG signal classification using linear SVM classifiers. Simulation results in terms of the classification accuracy are presented for the proposed stochastic computing and the traditional binary implementations based datasets from two patients. It is shown that accuracies of the proposed stochastic linear SVM are improved by 3.88\% and 85.49\% for datasets from patient-1 and patient-2, respectively, by using the proposed linear-transform for input data. Compared to conventional binary implementation, the accuracy of the proposed stochastic ANN is improved by 5.89\% for the datasets from patient-1. For patient-2, the accuracy of the proposed stochastic ANN is improved by 7.49\% by using the proposed linear-transform for input data. Additionally, compared to the traditional binary linear SVM and ANN, the hardware complexity, power consumption and critical path of the proposed stochastic implementations are reduced significantly.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of Minnesota.
$b
Electrical and Computer Engineering.
$3
1194201
773
0
$t
Dissertation Abstracts International
$g
79-04B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10604827
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入