語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Functional Data Smoothing Methods an...
~
Huang, Songqiao.
Functional Data Smoothing Methods and Their Applications.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Functional Data Smoothing Methods and Their Applications./
作者:
Huang, Songqiao.
面頁冊數:
1 online resource (136 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Contained By:
Dissertation Abstracts International79-08B(E).
標題:
Statistics. -
電子資源:
click for full text (PQDT)
ISBN:
9780355665727
Functional Data Smoothing Methods and Their Applications.
Huang, Songqiao.
Functional Data Smoothing Methods and Their Applications.
- 1 online resource (136 pages)
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Thesis (Ph.D.)--University of South Carolina, 2017.
Includes bibliographical references
In many subjects such as psychology, geography, physiology or behavioral science, researchers collect and analyze non-traditional data, i.e., data that do not consist of a set of scalar or vector observations, but rather a set of sequential observations measured over a fine grid on a continuous domain, such as time, space, etc. Because the underlying functional structure of the individual datum is of interest, Ramsay and Dalzell (1991) named the collection of topics involving analyzing these functional observations functional data analysis (FDA). Topics in functional data analysis include data smoothing, data registration, regression analysis with functional responses, cluster analysis on functional data, etc. Among these topics, data smoothing and data registration serve as preliminary steps that allow for more reliable statistical inference afterwards. In this dissertation, we include three research projects on functional data smoothing and its effects on functional data applications. In particular, Chapter 2 mainly presents a unified Bayesian approach that borrows the idea of time warping to represent functional curves of various shapes. Based on a comparison with the method of B-splines developed by de Boor (2001) and some other methods that are well known for its broad applications in curve fitting, our method is proved to adapt more flexibly to highly irregular curves. Then, Chapter 3 discusses subsequent regression and clustering methods for functional data, and investigates the accuracy of functional regression prediction as well as clustering results as measured by either traditional in-sample and out-of-sample sum of squares or the Rand index. It is showed that using our Bayesian smoothing method on the raw curves prior to carrying out the corresponding applications provides very competitive statistical inference and analytic results in most scenarios compared to using other standard smoothing methods prior to the applications. Lastly, notice that one restriction for our method in Chapter 2 is that it can only be applied to functional curves that are observed on a fine grid of time points. Hence, in Chapter 4, we extend the idea of our transformed basis smoothing method in Chapter 2 to the sparse functional data scenario. We show via simulations and analysis that the proposed method gives a very good approximation of the overall pattern as well as the individual trends for the data with the cluster of sparsely observed curves.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355665727Subjects--Topical Terms:
556824
Statistics.
Index Terms--Genre/Form:
554714
Electronic books.
Functional Data Smoothing Methods and Their Applications.
LDR
:03675ntm a2200325Ki 4500
001
920642
005
20181203094031.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355665727
035
$a
(MiAaPQ)AAI10599920
035
$a
(MiAaPQ)sc:15164
035
$a
AAI10599920
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Huang, Songqiao.
$3
1195501
245
1 0
$a
Functional Data Smoothing Methods and Their Applications.
264
0
$c
2017
300
$a
1 online resource (136 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
500
$a
Adviser: David B. Hitchcock.
502
$a
Thesis (Ph.D.)--University of South Carolina, 2017.
504
$a
Includes bibliographical references
520
$a
In many subjects such as psychology, geography, physiology or behavioral science, researchers collect and analyze non-traditional data, i.e., data that do not consist of a set of scalar or vector observations, but rather a set of sequential observations measured over a fine grid on a continuous domain, such as time, space, etc. Because the underlying functional structure of the individual datum is of interest, Ramsay and Dalzell (1991) named the collection of topics involving analyzing these functional observations functional data analysis (FDA). Topics in functional data analysis include data smoothing, data registration, regression analysis with functional responses, cluster analysis on functional data, etc. Among these topics, data smoothing and data registration serve as preliminary steps that allow for more reliable statistical inference afterwards. In this dissertation, we include three research projects on functional data smoothing and its effects on functional data applications. In particular, Chapter 2 mainly presents a unified Bayesian approach that borrows the idea of time warping to represent functional curves of various shapes. Based on a comparison with the method of B-splines developed by de Boor (2001) and some other methods that are well known for its broad applications in curve fitting, our method is proved to adapt more flexibly to highly irregular curves. Then, Chapter 3 discusses subsequent regression and clustering methods for functional data, and investigates the accuracy of functional regression prediction as well as clustering results as measured by either traditional in-sample and out-of-sample sum of squares or the Rand index. It is showed that using our Bayesian smoothing method on the raw curves prior to carrying out the corresponding applications provides very competitive statistical inference and analytic results in most scenarios compared to using other standard smoothing methods prior to the applications. Lastly, notice that one restriction for our method in Chapter 2 is that it can only be applied to functional curves that are observed on a fine grid of time points. Hence, in Chapter 4, we extend the idea of our transformed basis smoothing method in Chapter 2 to the sparse functional data scenario. We show via simulations and analysis that the proposed method gives a very good approximation of the overall pattern as well as the individual trends for the data with the cluster of sparsely observed curves.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Statistics.
$3
556824
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0463
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of South Carolina.
$b
Statistics.
$3
1195502
773
0
$t
Dissertation Abstracts International
$g
79-08B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10599920
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入