語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multimodal Analytics for Healthcare.
~
University of California, Santa Barbara.
Multimodal Analytics for Healthcare.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Multimodal Analytics for Healthcare./
作者:
Torres, Carlos.
面頁冊數:
1 online resource (162 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Contained By:
Dissertation Abstracts International79-08B(E).
標題:
Electrical engineering. -
電子資源:
click for full text (PQDT)
ISBN:
9780355736397
Multimodal Analytics for Healthcare.
Torres, Carlos.
Multimodal Analytics for Healthcare.
- 1 online resource (162 pages)
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Thesis (Ph.D.)--University of California, Santa Barbara, 2017.
Includes bibliographical references
The ailing healthcare system demands effective autonomous solutions to improve service and provide individualize care, while reducing the burden on the scarce healthcare workforce. Most of these solutions require a multidisciplinary approach that combines healthcare with computational abilities. The work presented in this thesis introduces a multimodal multiview network along with methods and solutions that leverage inexpensive visual sensors and computers to monitor healthcare. One of the most prominent outcomes of this work includes enabling the medical analysis of ICU conditions such as sleep disorders, decubitus ulcerations, and hospital acquired infections, which are preventable and negatively affect patients' health population. The problems tackled include patient pose classification, pose motion analysis and summarization, role representation and identification, and activity and event logging in natural hospital settings. These problems are addressed via a non-intrusive non-disruptive multimodal multiview sensor network (Medical Internet-of-Things). The multimodal data is combined with coupled-optimization to estimate source weights and accurately classify patient poses. Pose patterns such as pose transitions are represented using deep convolutional features and pose duration is modelled via segments. The proposed techniques serve to differentiate between poses and pseudo-poses (transitory poses) and create effective motion summaries. The role representation is tackled using novel appearance and semantic interaction maps to assign generic labels to individuals (doctor, nurse, visitor, etc) without using identifiable information (e.g., facetracking or badges), which is prohibited in healthcare applications. Finally, activity and event analysis is tackled using a new contextual aspect frames where aspect bases and weights are learned and then used to reconstruct activities. The objective of this thesis is to enable the development, evaluation, and optimization of individualized therapies, standards-of-care, room infrastructural designs, and clinical workflows and procedures.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355736397Subjects--Topical Terms:
596380
Electrical engineering.
Index Terms--Genre/Form:
554714
Electronic books.
Multimodal Analytics for Healthcare.
LDR
:03349ntm a2200349Ki 4500
001
920694
005
20181203094032.5
006
m o u
007
cr mn||||a|a||
008
190606s2017 xx obm 000 0 eng d
020
$a
9780355736397
035
$a
(MiAaPQ)AAI10743767
035
$a
(MiAaPQ)ucsb:13772
035
$a
AAI10743767
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Torres, Carlos.
$3
1195564
245
1 0
$a
Multimodal Analytics for Healthcare.
264
0
$c
2017
300
$a
1 online resource (162 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
500
$a
Adviser: Bangalore S. Manjunath.
502
$a
Thesis (Ph.D.)--University of California, Santa Barbara, 2017.
504
$a
Includes bibliographical references
520
$a
The ailing healthcare system demands effective autonomous solutions to improve service and provide individualize care, while reducing the burden on the scarce healthcare workforce. Most of these solutions require a multidisciplinary approach that combines healthcare with computational abilities. The work presented in this thesis introduces a multimodal multiview network along with methods and solutions that leverage inexpensive visual sensors and computers to monitor healthcare. One of the most prominent outcomes of this work includes enabling the medical analysis of ICU conditions such as sleep disorders, decubitus ulcerations, and hospital acquired infections, which are preventable and negatively affect patients' health population. The problems tackled include patient pose classification, pose motion analysis and summarization, role representation and identification, and activity and event logging in natural hospital settings. These problems are addressed via a non-intrusive non-disruptive multimodal multiview sensor network (Medical Internet-of-Things). The multimodal data is combined with coupled-optimization to estimate source weights and accurately classify patient poses. Pose patterns such as pose transitions are represented using deep convolutional features and pose duration is modelled via segments. The proposed techniques serve to differentiate between poses and pseudo-poses (transitory poses) and create effective motion summaries. The role representation is tackled using novel appearance and semantic interaction maps to assign generic labels to individuals (doctor, nurse, visitor, etc) without using identifiable information (e.g., facetracking or badges), which is prohibited in healthcare applications. Finally, activity and event analysis is tackled using a new contextual aspect frames where aspect bases and weights are learned and then used to reconstruct activities. The objective of this thesis is to enable the development, evaluation, and optimization of individualized therapies, standards-of-care, room infrastructural designs, and clinical workflows and procedures.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Electrical engineering.
$3
596380
650
4
$a
Health care management.
$3
1148454
650
4
$a
Computer science.
$3
573171
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0544
690
$a
0769
690
$a
0984
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
University of California, Santa Barbara.
$b
Electrical & Computer Engineering.
$3
1187216
773
0
$t
Dissertation Abstracts International
$g
79-08B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10743767
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入