語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Interval Estimation for Semiparametr...
~
ProQuest Information and Learning Co.
Interval Estimation for Semiparametric Predictive Regression.
紀錄類型:
書目-語言資料,手稿 : Monograph/item
正題名/作者:
Interval Estimation for Semiparametric Predictive Regression./
作者:
Hong, Shaoxin.
面頁冊數:
1 online resource (66 pages)
附註:
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Contained By:
Dissertation Abstracts International79-08B(E).
標題:
Statistics. -
電子資源:
click for full text (PQDT)
ISBN:
9780355795172
Interval Estimation for Semiparametric Predictive Regression.
Hong, Shaoxin.
Interval Estimation for Semiparametric Predictive Regression.
- 1 online resource (66 pages)
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
Thesis (Ph.D.)--The University of North Carolina at Charlotte, 2018.
Includes bibliographical references
Predictive regression is an important research topic in financial econometrics. Various estimation methods have been proposed for it, but they suffer from complicated asymptotic limits which depend on whether or not the predicting variable is stationary. This makes inference for the predictability difficult. In this paper we employ a nonlinear projection to deal with endogeneity of the state variable which results in a new semiparametric predictive regression model for describing the relationship between the state variables and the asset return. We propose a weighted profile estimation equation method to estimate the parameters and an empirical likelihood ratio test to examine the predictability of state variables. We establish the asymptotic normality of the proposed estimator and show the Wilks theorem holds for the test statistic regardless of predicting variables being stationary or not. This provides a unifying method for constructing confidence regions of the coefficients of state variables. Simulations demonstrate favorable finite sample performance of the proposed method over some existing approaches. Real examples illustrate the value of our methodology.
Electronic reproduction.
Ann Arbor, Mich. :
ProQuest,
2018
Mode of access: World Wide Web
ISBN: 9780355795172Subjects--Topical Terms:
556824
Statistics.
Index Terms--Genre/Form:
554714
Electronic books.
Interval Estimation for Semiparametric Predictive Regression.
LDR
:02395ntm a2200325Ki 4500
001
920705
005
20181203094032.5
006
m o u
007
cr mn||||a|a||
008
190606s2018 xx obm 000 0 eng d
020
$a
9780355795172
035
$a
(MiAaPQ)AAI10746967
035
$a
(MiAaPQ)uncc:11613
035
$a
AAI10746967
040
$a
MiAaPQ
$b
eng
$c
MiAaPQ
$d
NTU
100
1
$a
Hong, Shaoxin.
$3
1195575
245
1 0
$a
Interval Estimation for Semiparametric Predictive Regression.
264
0
$c
2018
300
$a
1 online resource (66 pages)
336
$a
text
$b
txt
$2
rdacontent
337
$a
computer
$b
c
$2
rdamedia
338
$a
online resource
$b
cr
$2
rdacarrier
500
$a
Source: Dissertation Abstracts International, Volume: 79-08(E), Section: B.
500
$a
Adviser: Jiancheng Jiang.
502
$a
Thesis (Ph.D.)--The University of North Carolina at Charlotte, 2018.
504
$a
Includes bibliographical references
520
$a
Predictive regression is an important research topic in financial econometrics. Various estimation methods have been proposed for it, but they suffer from complicated asymptotic limits which depend on whether or not the predicting variable is stationary. This makes inference for the predictability difficult. In this paper we employ a nonlinear projection to deal with endogeneity of the state variable which results in a new semiparametric predictive regression model for describing the relationship between the state variables and the asset return. We propose a weighted profile estimation equation method to estimate the parameters and an empirical likelihood ratio test to examine the predictability of state variables. We establish the asymptotic normality of the proposed estimator and show the Wilks theorem holds for the test statistic regardless of predicting variables being stationary or not. This provides a unifying method for constructing confidence regions of the coefficients of state variables. Simulations demonstrate favorable finite sample performance of the proposed method over some existing approaches. Real examples illustrate the value of our methodology.
533
$a
Electronic reproduction.
$b
Ann Arbor, Mich. :
$c
ProQuest,
$d
2018
538
$a
Mode of access: World Wide Web
650
4
$a
Statistics.
$3
556824
655
7
$a
Electronic books.
$2
local
$3
554714
690
$a
0463
710
2
$a
ProQuest Information and Learning Co.
$3
1178819
710
2
$a
The University of North Carolina at Charlotte.
$b
Mathematics.
$3
1195576
773
0
$t
Dissertation Abstracts International
$g
79-08B(E).
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10746967
$z
click for full text (PQDT)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入