語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Data analytics for protein crystalli...
~
Aygun, Ramazan Savas.
Data analytics for protein crystallization
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Data analytics for protein crystallization/ by Marc L. Pusey, Ramazan Savas Aygun.
作者:
Pusey, Marc L.
其他作者:
Aygun, Ramazan Savas.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xx, 231 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Biology - Data processing. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-58937-4
ISBN:
9783319589374
Data analytics for protein crystallization
Pusey, Marc L.
Data analytics for protein crystallization
[electronic resource] /by Marc L. Pusey, Ramazan Savas Aygun. - Cham :Springer International Publishing :2017. - xx, 231 p. :ill., digital ;24 cm. - Computational biology,v.251568-2684 ;. - Computational biology ;v.23..
Introduction to Protein Crystallization -- Scoring and Phases of Crystallization -- Computational Methods for Protein Crystallization Screening -- Robotic Image Acquisition -- Classification of Crystallization Trial Images -- Crystal Growth Analysis -- Focal Stacking for Crystallization Microscopy -- Crystal Image Region Segmentation -- Visualization -- Other Structure Determination Methods -- Future of Computational Protein Crystallization.
This unique text/reference presents an overview of the computational aspects of protein crystallization, describing how to build robotic high-throughput and crystallization analysis systems. The coverage encompasses the complete data analysis cycle, including the set-up of screens by analyzing prior crystallization trials, the classification of crystallization trial images by effective feature extraction, the analysis of crystal growth in time series images, the segmentation of crystal regions in images, the application of focal stacking methods for crystallization images, and the visualization of trials. Topics and features: Describes the fundamentals of protein crystallization, and the scoring and categorization of crystallization image trials Introduces a selection of computational methods for protein crystallization screening, and the hardware and software architecture for a basic high-throughput system Presents an overview of the image features used in protein crystallization classification, and a spatio-temporal analysis of protein crystal growth Examines focal stacking techniques to avoid blurred crystallization images, and different thresholding methods for binarization or segmentation Discusses visualization methods and software for protein crystallization analysis, and reviews alternative methods to X-ray diffraction for obtaining structural information Provides an overview of the current challenges and potential future trends in protein crystallization This interdisciplinary work serves as an essential reference on the computational and data analytics components of protein crystallization for the structural biology community, in addition to computer scientists wishing to enter the field of protein crystallization. Dr. Marc L. Pusey is a Research Scientist at iXpressGenes, Inc. Huntsville, AL, USA. Dr. Ramazan Savas Aygun is an Associate Professor in the Computer Science Department of the University of Alabama in Huntsville, USA.
ISBN: 9783319589374
Standard No.: 10.1007/978-3-319-58937-4doiSubjects--Topical Terms:
563885
Biology
--Data processing.
LC Class. No.: QH324.2
Dewey Class. No.: 570.285
Data analytics for protein crystallization
LDR
:03438nam a2200337 a 4500
001
921857
003
DE-He213
005
20171127142219.0
006
m d
007
cr nn 008maaau
008
190624s2017 gw s 0 eng d
020
$a
9783319589374
$q
(electronic bk.)
020
$a
9783319589367
$q
(paper)
024
7
$a
10.1007/978-3-319-58937-4
$2
doi
035
$a
978-3-319-58937-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH324.2
072
7
$a
PSA
$2
bicssc
072
7
$a
UB
$2
bicssc
072
7
$a
COM014000
$2
bisacsh
082
0 4
$a
570.285
$2
23
090
$a
QH324.2
$b
.P987 2017
100
1
$a
Pusey, Marc L.
$3
1197045
245
1 0
$a
Data analytics for protein crystallization
$h
[electronic resource] /
$c
by Marc L. Pusey, Ramazan Savas Aygun.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xx, 231 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Computational biology,
$x
1568-2684 ;
$v
v.25
505
0
$a
Introduction to Protein Crystallization -- Scoring and Phases of Crystallization -- Computational Methods for Protein Crystallization Screening -- Robotic Image Acquisition -- Classification of Crystallization Trial Images -- Crystal Growth Analysis -- Focal Stacking for Crystallization Microscopy -- Crystal Image Region Segmentation -- Visualization -- Other Structure Determination Methods -- Future of Computational Protein Crystallization.
520
$a
This unique text/reference presents an overview of the computational aspects of protein crystallization, describing how to build robotic high-throughput and crystallization analysis systems. The coverage encompasses the complete data analysis cycle, including the set-up of screens by analyzing prior crystallization trials, the classification of crystallization trial images by effective feature extraction, the analysis of crystal growth in time series images, the segmentation of crystal regions in images, the application of focal stacking methods for crystallization images, and the visualization of trials. Topics and features: Describes the fundamentals of protein crystallization, and the scoring and categorization of crystallization image trials Introduces a selection of computational methods for protein crystallization screening, and the hardware and software architecture for a basic high-throughput system Presents an overview of the image features used in protein crystallization classification, and a spatio-temporal analysis of protein crystal growth Examines focal stacking techniques to avoid blurred crystallization images, and different thresholding methods for binarization or segmentation Discusses visualization methods and software for protein crystallization analysis, and reviews alternative methods to X-ray diffraction for obtaining structural information Provides an overview of the current challenges and potential future trends in protein crystallization This interdisciplinary work serves as an essential reference on the computational and data analytics components of protein crystallization for the structural biology community, in addition to computer scientists wishing to enter the field of protein crystallization. Dr. Marc L. Pusey is a Research Scientist at iXpressGenes, Inc. Huntsville, AL, USA. Dr. Ramazan Savas Aygun is an Associate Professor in the Computer Science Department of the University of Alabama in Huntsville, USA.
650
0
$a
Biology
$x
Data processing.
$3
563885
650
0
$a
Crystalloids (Botany)
$3
1197047
650
0
$a
Visualization.
$3
574210
650
1 4
$a
Computer Science.
$3
593922
650
2 4
$a
Computational Biology/Bioinformatics.
$3
677363
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
677765
650
2 4
$a
Image Processing and Computer Vision.
$3
670819
650
2 4
$a
Molecular Medicine.
$3
668353
650
2 4
$a
Biotechnology.
$3
554955
700
1
$a
Aygun, Ramazan Savas.
$3
1197046
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Computational biology ;
$v
v.23.
$3
1069228
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-58937-4
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入