語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Decoding neural circuit structure an...
~
Wernet, Mathias F.
Decoding neural circuit structure and function = cellular dissection using genetic model organisms /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Decoding neural circuit structure and function/ edited by Arzu Celik, Mathias F. Wernet.
其他題名:
cellular dissection using genetic model organisms /
其他作者:
Celik, Arzu.
出版者:
Cham :Springer International Publishing : : 2017.,
面頁冊數:
xiii, 518 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Neuroanatomy. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-57363-2
ISBN:
9783319573632
Decoding neural circuit structure and function = cellular dissection using genetic model organisms /
Decoding neural circuit structure and function
cellular dissection using genetic model organisms /[electronic resource] :edited by Arzu Celik, Mathias F. Wernet. - Cham :Springer International Publishing :2017. - xiii, 518 p. :ill., digital ;24 cm.
1. Note from the editors -- 2. Overview: The current state of neural circuit dissection in genetic model organisms -- Part I: High-resultion Neuroanatomy using molecular-genetic tools -- 3. Neuroanatomical techniques in invertebrate model organisms (flies, worms) -- 4. Neuroanatomical techniques in vertebrate model systems (mice, monkeys) -- 5. The current state of whole-brain connectomics in invertebrates -- 6. The progress in large-scale connectomics in vertebrates -- 7. Establishing synaptic connection the invertebrate brain (neural superposition?) -- 8. Target selection and synaptogenesis in vertebrate models -- Part II: The behavioral contributions of identified circuit elements -- 9. Behavioral paradigms for dissecting neural circuitry in invertebrates -- 10. Behavioral paradigms for dissecting neural circuitry in vertebrates -- 11. Targeted disruption of neuronal activity in behaving invertebrate models -- 12. Circuit breaking and optogenetics in vertebrates -- 13. Modeling of neural circuits in invertebrates -- 14. Modeling of neural circuits in vertebrates -- Part III: The functional contribution of identified cells to the circuit -- 15. The electrophysiological characterization of identified invertebrate circuit elements -- 16. Electrophysiology in combination with molecular genetic tools in vertebrates -- 17. Genetically encoded activity sensors in invertebrates -- 18. Genetically encoded activity sensors in vertebrates -- 19. Combining circuit breaking tools and the visualization of activity in invertebrates -- 20. Visualization of neuronal activity while circuit breaking in vertebrates -- Part IV: Molecular determinants of cell type diversity -- 21. The developmental origin of cell type diversity in invertebrate brains -- 22. The development of neuronal cell type diversity in the vertebrate brain -- 23. Transcriptional profiling of identified circuit elements in invertebrates -- 24. Transcriptional profiling in neural circuits in vertebrates.
This book offers representative examples from fly and mouse models to illustrate the ongoing success of the synergistic, state-of-the-art strategy, focusing on the ways it enhances our understanding of sensory processing. The authors focus on sensory systems (vision, olfaction), which are particularly powerful models for probing the development, connectivity, and function of neural circuits, to answer this question: How do individual nerve cells functionally cooperate to guide behavioral responses? Two genetically tractable species, mice and flies, together significantly further our understanding of these processes. Current efforts focus on integrating knowledge gained from three interrelated fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types ("connectomics") using high-resolution three-dimensional circuit anatomy, and (3) causal testing of how identified circuit elements contribute to visual perception and behavior.
ISBN: 9783319573632
Standard No.: 10.1007/978-3-319-57363-2doiSubjects--Topical Terms:
581545
Neuroanatomy.
LC Class. No.: QM451
Dewey Class. No.: 573.833
Decoding neural circuit structure and function = cellular dissection using genetic model organisms /
LDR
:04050nam a2200313 a 4500
001
922769
003
DE-He213
005
20170725081411.0
006
m d
007
cr nn 008maaau
008
190625s2017 gw s 0 eng d
020
$a
9783319573632
$q
(electronic bk.)
020
$a
9783319573625
$q
(paper)
024
7
$a
10.1007/978-3-319-57363-2
$2
doi
035
$a
978-3-319-57363-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QM451
072
7
$a
PSAN
$2
bicssc
072
7
$a
MED057000
$2
bisacsh
082
0 4
$a
573.833
$2
23
090
$a
QM451
$b
.D296 2017
245
0 0
$a
Decoding neural circuit structure and function
$h
[electronic resource] :
$b
cellular dissection using genetic model organisms /
$c
edited by Arzu Celik, Mathias F. Wernet.
260
$a
Cham :
$c
2017.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xiii, 518 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Note from the editors -- 2. Overview: The current state of neural circuit dissection in genetic model organisms -- Part I: High-resultion Neuroanatomy using molecular-genetic tools -- 3. Neuroanatomical techniques in invertebrate model organisms (flies, worms) -- 4. Neuroanatomical techniques in vertebrate model systems (mice, monkeys) -- 5. The current state of whole-brain connectomics in invertebrates -- 6. The progress in large-scale connectomics in vertebrates -- 7. Establishing synaptic connection the invertebrate brain (neural superposition?) -- 8. Target selection and synaptogenesis in vertebrate models -- Part II: The behavioral contributions of identified circuit elements -- 9. Behavioral paradigms for dissecting neural circuitry in invertebrates -- 10. Behavioral paradigms for dissecting neural circuitry in vertebrates -- 11. Targeted disruption of neuronal activity in behaving invertebrate models -- 12. Circuit breaking and optogenetics in vertebrates -- 13. Modeling of neural circuits in invertebrates -- 14. Modeling of neural circuits in vertebrates -- Part III: The functional contribution of identified cells to the circuit -- 15. The electrophysiological characterization of identified invertebrate circuit elements -- 16. Electrophysiology in combination with molecular genetic tools in vertebrates -- 17. Genetically encoded activity sensors in invertebrates -- 18. Genetically encoded activity sensors in vertebrates -- 19. Combining circuit breaking tools and the visualization of activity in invertebrates -- 20. Visualization of neuronal activity while circuit breaking in vertebrates -- Part IV: Molecular determinants of cell type diversity -- 21. The developmental origin of cell type diversity in invertebrate brains -- 22. The development of neuronal cell type diversity in the vertebrate brain -- 23. Transcriptional profiling of identified circuit elements in invertebrates -- 24. Transcriptional profiling in neural circuits in vertebrates.
520
$a
This book offers representative examples from fly and mouse models to illustrate the ongoing success of the synergistic, state-of-the-art strategy, focusing on the ways it enhances our understanding of sensory processing. The authors focus on sensory systems (vision, olfaction), which are particularly powerful models for probing the development, connectivity, and function of neural circuits, to answer this question: How do individual nerve cells functionally cooperate to guide behavioral responses? Two genetically tractable species, mice and flies, together significantly further our understanding of these processes. Current efforts focus on integrating knowledge gained from three interrelated fields of research: (1) understanding how the fates of different cell types are specified during development, (2) revealing the synaptic connections between identified cell types ("connectomics") using high-resolution three-dimensional circuit anatomy, and (3) causal testing of how identified circuit elements contribute to visual perception and behavior.
650
0
$a
Neuroanatomy.
$3
581545
650
0
$a
Neural circuitry.
$3
581532
650
1 4
$a
Biomedicine.
$3
593880
650
2 4
$a
Neurosciences.
$3
593561
650
2 4
$a
Human Genetics.
$3
593893
650
2 4
$a
Cell Biology.
$3
593889
700
1
$a
Celik, Arzu.
$3
1198598
700
1
$a
Wernet, Mathias F.
$3
1198599
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-57363-2
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入