語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Blade-pitch control for wind turbine...
~
SpringerLink (Online service)
Blade-pitch control for wind turbine load reductions
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Blade-pitch control for wind turbine load reductions/ by Wai Hou (Alan) Lio.
作者:
Lio, Wai Hou (Alan).
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xxvii, 174 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Wind turbines. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-75532-8
ISBN:
9783319755328
Blade-pitch control for wind turbine load reductions
Lio, Wai Hou (Alan).
Blade-pitch control for wind turbine load reductions
[electronic resource] /by Wai Hou (Alan) Lio. - Cham :Springer International Publishing :2018. - xxvii, 174 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction -- Background of Wind Turbine Blade-Pitch Load Reduction Control -- Review of the Related Work -- Performance Similarities between Individual Pitch Control Strategies -- Estimation and Control Design for Tower Motions -- Feed-Forward Model Predictive Control Design based upon a Feedback Controller -- Feed-Forward Model Predictive Control Layer on Wind Turbines -- Conclusions and Future Work.
This thesis investigates the use of blade-pitch control and real-time wind measurements to reduce the structural loads on the rotors and blades of wind turbines. The first part of the thesis studies the main similarities between the various classes of current blade-pitch control strategies, which have to date remained overlooked by mainstream literature. It also investigates the feasibility of an estimator design that extracts the turbine tower motion signal from the blade load measurements. In turn, the second part of the thesis proposes a novel model predictive control layer in the control architecture that enables an existing controller to incorporate the upcoming wind information and constraint-handling features. This thesis provides essential clarifications of and systematic design guidelines for these topics, which can benefit the design of wind turbines and, it is hoped, inspire the development of more innovative mechanical load-reduction solutions in the field of wind energy.
ISBN: 9783319755328
Standard No.: 10.1007/978-3-319-75532-8doiSubjects--Topical Terms:
598427
Wind turbines.
LC Class. No.: TJ828 / .L56 2018
Dewey Class. No.: 621.45
Blade-pitch control for wind turbine load reductions
LDR
:02375nam a2200325 a 4500
001
924930
003
DE-He213
005
20180912090710.0
006
m d
007
cr nn 008maaau
008
190625s2018 gw s 0 eng d
020
$a
9783319755328
$q
(electronic bk.)
020
$a
9783319755311
$q
(paper)
024
7
$a
10.1007/978-3-319-75532-8
$2
doi
035
$a
978-3-319-75532-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ828
$b
.L56 2018
072
7
$a
THX
$2
bicssc
072
7
$a
TEC031010
$2
bisacsh
082
0 4
$a
621.45
$2
23
090
$a
TJ828
$b
.L763 2018
100
1
$a
Lio, Wai Hou (Alan).
$3
1202302
245
1 0
$a
Blade-pitch control for wind turbine load reductions
$h
[electronic resource] /
$c
by Wai Hou (Alan) Lio.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xxvii, 174 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction -- Background of Wind Turbine Blade-Pitch Load Reduction Control -- Review of the Related Work -- Performance Similarities between Individual Pitch Control Strategies -- Estimation and Control Design for Tower Motions -- Feed-Forward Model Predictive Control Design based upon a Feedback Controller -- Feed-Forward Model Predictive Control Layer on Wind Turbines -- Conclusions and Future Work.
520
$a
This thesis investigates the use of blade-pitch control and real-time wind measurements to reduce the structural loads on the rotors and blades of wind turbines. The first part of the thesis studies the main similarities between the various classes of current blade-pitch control strategies, which have to date remained overlooked by mainstream literature. It also investigates the feasibility of an estimator design that extracts the turbine tower motion signal from the blade load measurements. In turn, the second part of the thesis proposes a novel model predictive control layer in the control architecture that enables an existing controller to incorporate the upcoming wind information and constraint-handling features. This thesis provides essential clarifications of and systematic design guidelines for these topics, which can benefit the design of wind turbines and, it is hoped, inspire the development of more innovative mechanical load-reduction solutions in the field of wind energy.
650
0
$a
Wind turbines.
$3
598427
650
0
$a
Renewable energy sources.
$3
558536
650
1 4
$a
Energy.
$3
784773
650
2 4
$a
Renewable and Green Energy.
$3
683875
650
2 4
$a
Control.
$3
782232
650
2 4
$a
Mechanical Engineering.
$3
670827
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
831604
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-75532-8
950
$a
Energy (Springer-40367)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入