語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Dynamic parameter adaptation for met...
~
Olivas, Frumen.
Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic/ by Frumen Olivas ... [et al.].
其他作者:
Olivas, Frumen.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
vii, 105 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Engineering. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-70851-5
ISBN:
9783319708515
Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic
Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic
[electronic resource] /by Frumen Olivas ... [et al.]. - Cham :Springer International Publishing :2018. - vii, 105 p. :ill., digital ;24 cm. - SpringerBriefs in applied sciences and technology,2191-530X. - SpringerBriefs in applied sciences and technology..
Introduction -- Theory and Background -- Problems Statement -- Methodology -- Simulation Results -- Statistical Analysis and Comparison of Results.
In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed. Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method. Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment.
ISBN: 9783319708515
Standard No.: 10.1007/978-3-319-70851-5doiSubjects--Topical Terms:
561152
Engineering.
LC Class. No.: Q342
Dewey Class. No.: 006.3
Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic
LDR
:02353nam a2200325 a 4500
001
925060
003
DE-He213
005
20180927101924.0
006
m d
007
cr nn 008maaau
008
190625s2018 gw s 0 eng d
020
$a
9783319708515
$q
(electronic bk.)
020
$a
9783319708508
$q
(paper)
024
7
$a
10.1007/978-3-319-70851-5
$2
doi
035
$a
978-3-319-70851-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
Q342
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3
$2
23
090
$a
Q342
$b
.D997 2018
245
0 0
$a
Dynamic parameter adaptation for meta-heuristic optimization algorithms through type-2 fuzzy logic
$h
[electronic resource] /
$c
by Frumen Olivas ... [et al.].
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
vii, 105 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology,
$x
2191-530X
505
0
$a
Introduction -- Theory and Background -- Problems Statement -- Methodology -- Simulation Results -- Statistical Analysis and Comparison of Results.
520
$a
In this book, a methodology for parameter adaptation in meta-heuristic op-timization methods is proposed. This methodology is based on using met-rics about the population of the meta-heuristic methods, to decide through a fuzzy inference system the best parameter values that were carefully se-lected to be adjusted. With this modification of parameters we want to find a better model of the behavior of the optimization method, because with the modification of parameters, these will affect directly the way in which the global or local search are performed. Three different optimization methods were used to verify the improve-ment of the proposed methodology. In this case the optimization methods are: PSO (Particle Swarm Optimization), ACO (Ant Colony Optimization) and GSA (Gravitational Search Algorithm), where some parameters are se-lected to be dynamically adjusted, and these parameters have the most im-pact in the behavior of each optimization method. Simulation results show that the proposed methodology helps to each optimization method in obtaining better results than the results obtained by the original method without parameter adjustment.
650
0
$a
Engineering.
$3
561152
650
0
$a
Artificial intelligence.
$3
559380
650
0
$a
Computational intelligence.
$3
568984
650
2 4
$a
Computational Intelligence.
$3
768837
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
593924
700
1
$a
Olivas, Frumen.
$3
1202449
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$3
885514
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-70851-5
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入