語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Discrete stochastic processes and ap...
~
Collet, Jean-Francois.
Discrete stochastic processes and applications
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Discrete stochastic processes and applications/ by Jean-Francois Collet.
作者:
Collet, Jean-Francois.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xvii, 220 p. :ill., digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Stochastic processes. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-74018-8
ISBN:
9783319740188
Discrete stochastic processes and applications
Collet, Jean-Francois.
Discrete stochastic processes and applications
[electronic resource] /by Jean-Francois Collet. - Cham :Springer International Publishing :2018. - xvii, 220 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
Preface -- I. Markov processes -- 1. Discrete time, countable space -- 2. Linear algebra and search engines -- 3. The Poisson process -- 4. Continuous time, discrete space -- 5. Examples -- II. Entropy and applications -- 6. Prelude: a user's guide to convexity -- 7. The basic quantities of information theory -- 8. An example of application: binary coding -- A. Some useful facts from calculus -- B. Some useful facts from probability -- C. Some useful facts from linear algebra -- D. An arithmetical lemma -- E. Table of exponential families -- References -- Index.
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
ISBN: 9783319740188
Standard No.: 10.1007/978-3-319-74018-8doiSubjects--Topical Terms:
528256
Stochastic processes.
LC Class. No.: QA274 / .C655 2018
Dewey Class. No.: 519.23
Discrete stochastic processes and applications
LDR
:02514nam a2200337 a 4500
001
925191
003
DE-He213
005
20181011144853.0
006
m d
007
cr nn 008maaau
008
190625s2018 gw s 0 eng d
020
$a
9783319740188
$q
(electronic bk.)
020
$a
9783319740171
$q
(paper)
024
7
$a
10.1007/978-3-319-74018-8
$2
doi
035
$a
978-3-319-74018-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274
$b
.C655 2018
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.23
$2
23
090
$a
QA274
$b
.C698 2018
100
1
$a
Collet, Jean-Francois.
$3
1202726
245
1 0
$a
Discrete stochastic processes and applications
$h
[electronic resource] /
$c
by Jean-Francois Collet.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xvii, 220 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
Preface -- I. Markov processes -- 1. Discrete time, countable space -- 2. Linear algebra and search engines -- 3. The Poisson process -- 4. Continuous time, discrete space -- 5. Examples -- II. Entropy and applications -- 6. Prelude: a user's guide to convexity -- 7. The basic quantities of information theory -- 8. An example of application: binary coding -- A. Some useful facts from calculus -- B. Some useful facts from probability -- C. Some useful facts from linear algebra -- D. An arithmetical lemma -- E. Table of exponential families -- References -- Index.
520
$a
This unique text for beginning graduate students gives a self-contained introduction to the mathematical properties of stochastics and presents their applications to Markov processes, coding theory, population dynamics, and search engine design. The book is ideal for a newly designed course in an introduction to probability and information theory. Prerequisites include working knowledge of linear algebra, calculus, and probability theory. The first part of the text focuses on the rigorous theory of Markov processes on countable spaces (Markov chains) and provides the basis to developing solid probabilistic intuition without the need for a course in measure theory. The approach taken is gradual beginning with the case of discrete time and moving on to that of continuous time. The second part of this text is more applied; its core introduces various uses of convexity in probability and presents a nice treatment of entropy.
650
0
$a
Stochastic processes.
$3
528256
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
593945
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
881573
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-74018-8
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入