語系:
繁體中文
English
說明(常見問題)
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Practical mathematical optimization ...
~
SpringerLink (Online service)
Practical mathematical optimization = basic optimization theory and gradient-based algorithms /
紀錄類型:
書目-語言資料,印刷品 : Monograph/item
正題名/作者:
Practical mathematical optimization/ by Jan A Snyman, Daniel N Wilke.
其他題名:
basic optimization theory and gradient-based algorithms /
作者:
Snyman, Jan A.
其他作者:
Wilke, Daniel N.
出版者:
Cham :Springer International Publishing : : 2018.,
面頁冊數:
xxvi, 372 p. :ill. (some col.), digital ; : 24 cm.;
Contained By:
Springer eBooks
標題:
Mathematical optimization. -
電子資源:
http://dx.doi.org/10.1007/978-3-319-77586-9
ISBN:
9783319775869
Practical mathematical optimization = basic optimization theory and gradient-based algorithms /
Snyman, Jan A.
Practical mathematical optimization
basic optimization theory and gradient-based algorithms /[electronic resource] :by Jan A Snyman, Daniel N Wilke. - 2nd ed. - Cham :Springer International Publishing :2018. - xxvi, 372 p. :ill. (some col.), digital ;24 cm. - Springer optimization and its applications,v.1331931-6828 ;. - Springer optimization and its applications ;v. 16..
1.Introduction -- 2.Line search descent methods for unconstrained minimization -- 3. Standard methods for constrained optimization -- 4. Basic Example Problems -- 5. Some Basic Optimization Theorems -- 6. New gradient-based trajectory and approximation methods -- 7. Surrogate Models -- 8. Gradient-only solution strategies -- 9. Practical computational optimization using Python -- Appendix -- Index.
This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills.
ISBN: 9783319775869
Standard No.: 10.1007/978-3-319-77586-9doiSubjects--Topical Terms:
527675
Mathematical optimization.
LC Class. No.: QA402.5
Dewey Class. No.: 519.6
Practical mathematical optimization = basic optimization theory and gradient-based algorithms /
LDR
:02888nam a2200337 a 4500
001
925888
003
DE-He213
005
20180502200829.0
006
m d
007
cr nn 008maaau
008
190625s2018 gw s 0 eng d
020
$a
9783319775869
$q
(electronic bk.)
020
$a
9783319775852
$q
(paper)
024
7
$a
10.1007/978-3-319-77586-9
$2
doi
035
$a
978-3-319-77586-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA402.5
072
7
$a
PBU
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
519.6
$2
23
090
$a
QA402.5
$b
.S675 2018
100
1
$a
Snyman, Jan A.
$3
672170
245
1 0
$a
Practical mathematical optimization
$h
[electronic resource] :
$b
basic optimization theory and gradient-based algorithms /
$c
by Jan A Snyman, Daniel N Wilke.
250
$a
2nd ed.
260
$a
Cham :
$c
2018.
$b
Springer International Publishing :
$b
Imprint: Springer,
300
$a
xxvi, 372 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer optimization and its applications,
$x
1931-6828 ;
$v
v.133
505
0
$a
1.Introduction -- 2.Line search descent methods for unconstrained minimization -- 3. Standard methods for constrained optimization -- 4. Basic Example Problems -- 5. Some Basic Optimization Theorems -- 6. New gradient-based trajectory and approximation methods -- 7. Surrogate Models -- 8. Gradient-only solution strategies -- 9. Practical computational optimization using Python -- Appendix -- Index.
520
$a
This textbook presents a wide range of tools for a course in mathematical optimization for upper undergraduate and graduate students in mathematics, engineering, computer science, and other applied sciences. Basic optimization principles are presented with emphasis on gradient-based numerical optimization strategies and algorithms for solving both smooth and noisy discontinuous optimization problems. Attention is also paid to the difficulties of expense of function evaluations and the existence of multiple minima that often unnecessarily inhibit the use of gradient-based methods. This second edition addresses further advancements of gradient-only optimization strategies to handle discontinuities in objective functions. New chapters discuss the construction of surrogate models as well as new gradient-only solution strategies and numerical optimization using Python. A special Python module is electronically available (via springerlink) that makes the new algorithms featured in the text easily accessible and directly applicable. Numerical examples and exercises are included to encourage senior- to graduate-level students to plan, execute, and reflect on numerical investigations. By gaining a deep understanding of the conceptual material presented, students, scientists, and engineers will be able to develop systematic and scientific numerical investigative skills.
650
0
$a
Mathematical optimization.
$3
527675
650
0
$a
Functions of real variables.
$3
792248
650
0
$a
Algorithms.
$3
527865
650
0
$a
Numerical analysis.
$3
527939
650
1 4
$a
Mathematics.
$3
527692
650
2 4
$a
Optimization.
$3
669174
650
2 4
$a
Operations Research, Management Science.
$3
785065
650
2 4
$a
Numerical Analysis.
$3
671433
650
2 4
$a
Mathematical Software.
$3
672446
650
2 4
$a
Real Functions.
$3
672094
700
1
$a
Wilke, Daniel N.
$3
1203973
710
2
$a
SpringerLink (Online service)
$3
593884
773
0
$t
Springer eBooks
830
0
$a
Springer optimization and its applications ;
$v
v. 16.
$3
791775
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-77586-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
多媒體
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼[密碼必須為2種組合(英文和數字)及長度為10碼以上]
登入